cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108184 a(n) = smallest prime such that a(n) + 2n is also prime and such that a(n) > a(n-1).

Original entry on oeis.org

2, 3, 7, 11, 23, 31, 41, 47, 67, 71, 83, 109, 113, 131, 139, 149, 167, 193, 197, 233, 241, 251, 263, 271, 283, 317, 331, 347, 353, 373, 379, 401, 439, 443, 479, 487, 491, 503, 523, 541, 563, 571, 577, 587, 613, 619, 641, 727, 733, 761, 787, 809, 863, 877
Offset: 0

Views

Author

Giovanni Teofilatto, Jun 28 2005

Keywords

Comments

Increasing primes p such that p + 2n is prime.

Examples

			a(0)=2 since 2+0=2 is prime; a(1)=3 since 3+2=5 is prime.
a(2)=7 since 7+4=11 is prime; 5 is not in the sequence since 5+4=9 is not prime.
		

Crossrefs

Programs

  • Maple
    A108184 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+1 do if isprime(a) and isprime(a+2*n) then RETURN(a) ; fi; od: fi; end: seq(A108184(n),n=1..100) ; # R. J. Mathar, Jan 31 2009
  • Mathematica
    t = {2}; Do[p = NextPrime[t[[-1]]]; While[! PrimeQ[p + 2 n], p = NextPrime[p]]; AppendTo[t, p], {n, 100}]; t (* T. D. Noe, Feb 04 2014 *)
  • PARI
    A108184(maxp) = {my(a=[2], n=1); forprime(p=3, maxp, if(isprime(p+2*n), n++; a=concat(a, p))); a} \\ Colin Barker, Feb 03 2014

Extensions

Edited and extended by Ray Chandler, Jul 07 2005
Edited by N. J. A. Sloane, Feb 11 2009 at the suggestion of R. J. Mathar