A108197 Number of composite numbers between two successive semiprimes.
0, 1, 0, 1, 0, 3, 0, 1, 0, 4, 0, 0, 1, 0, 4, 1, 1, 2, 1, 0, 1, 2, 2, 2, 2, 3, 1, 0, 0, 2, 1, 0, 0, 7, 2, 2, 2, 0, 1, 0, 0, 4, 2, 0, 4, 0, 0, 1, 0, 6, 1, 0, 1, 3, 1, 6, 0, 2, 1, 1, 4, 4, 0, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 3, 5, 1, 7, 1, 2, 0, 3, 2, 1, 1, 4, 2, 6, 1, 1, 2, 2, 0, 1, 0, 0, 1, 2, 2, 3, 1, 1, 2, 0, 1
Offset: 1
Examples
a(1) = 0 because between 2*2 and 2*3 there is 5 and it is not composite. a(2) = 1 because between 2*3 and 3*3 there is 8 = 2*2*2; a(6) = 3 because between 3*5 and 3*7 there are three composite numbers: {16, 18, 20}. a(10) = 4 because between 2*13 and 3*11 there are four composite numbers: {27, 28, 30, 32}. a(15) = 4 because there are four composites {40,42,44,45} between semiprime(15)=39 and semiprime(16)=46.
Programs
-
Maple
with(numtheory): sp:=proc(n) if bigomega(n)=2 then n else fi end: SP:=[seq(sp(n),n=1..450)]: for j from 1 to nops(SP)-1 do ct:=0: for i from SP[j]+1 to SP[j+1]-1 do if isprime(i)=false then ct:=ct+1 else ct:=ct fi: od: a[j]:=ct: od:seq(a[j],j=1..nops(SP)-1); # Emeric Deutsch, Mar 30 2007 A001358 := proc(nmin) local a,n ; a :=[] ; n := 1 ; while nops(a) < nmin do if numtheory[bigomega](n) = 2 then a := [op(a),n] ; fi ; n := n+1 ; od: RETURN(a) ; end: A000720 := proc(n) numtheory[pi](n) ; end: A065855 := proc(n) n-A000720(n)-1 ; end: A108197 := proc(nmin) local a,n,a001358 ; a001358 := A001358(nmin+1) ; a := [] ; for n from 1 to nops(a001358)-1 do a := [op(a), A065855(op(n+1,a001358))-A065855(op(n,a001358))-1 ] ; od; RETURN(a) ; end: A108197(100) ; # R. J. Mathar, Oct 23 2007
-
Mathematica
terms = 105; cc = Select[Range[4 terms], CompositeQ] /. c_ /; PrimeOmega[c] == 2 -> 0; SequenceReplace[cc, {0, c___ /; FreeQ[{c}, 0]} :> Length[{c}]][[;; terms]] (* Jean-François Alcover, Mar 31 2020 *)
Formula
Extensions
Corrected and extended by Ray Chandler, Jul 07 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jul 13 2007
Further edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Jul 01 2008
Comments