cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108238 Numbers of the form (7^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 7, 12, 49, 84, 144, 343, 588, 1008, 1728, 2401, 4116, 7056, 12096, 16807, 20736, 28812, 49392, 84672, 117649, 145152, 201684, 248832, 345744, 592704, 823543, 1016064, 1411788, 1741824, 2420208, 2985984, 4148928, 5764801, 7112448
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[7^#[[1]]*12^#[[2]]&/@Tuples[Range[0,10],2]//Union,40] (* Harvey P. Dale, Mar 05 2017 *)
    n = 10^6; Flatten[Table[7^i*12^j, {i, 0, Log[7, n]}, {j, 0, Log[12, n/7^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • Python
    from sympy import integer_log
    def A108238(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//12**i,7)[0]+1 for i in range(integer_log(x,12)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = (7*12)/((7-1)*(12-1)) = 14/11. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(7)*log(12)*n)) / sqrt(84). - Vaclav Kotesovec, Sep 26 2020

A317804 Numbers of form 2^i*12^j, with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 36864, 41472, 49152, 55296, 65536
Offset: 1

Views

Author

Dario Ch, Sep 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    With[{max = 10^5}, Flatten[Table[2^i*12^j, {i, 0, Log2[max]}, {j, 0, Log[12, max/2^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
  • Python
    from heapq import heappush, heappop
    def sequence():
        pq = [1]
        seen = set(pq)
        while True:
            value = heappop(pq)
            yield value
            seen.remove(value)
            for x in 2 * value, 12 * value:
                if x not in seen:
                    heappush(pq, x)
                    seen.add(x)
    seq = sequence()
    finalsequence_list = [next(seq) for i in range(100)]  # Dario Ch, Sep 01 2018
    
  • Python
    from sympy import integer_log
    def A317804(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//12**i).bit_length() for i in range(integer_log(x,12)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = 24/11. - Amiram Eldar, Mar 29 2025

A108218 Numbers of the form (11^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 11, 12, 121, 132, 144, 1331, 1452, 1584, 1728, 14641, 15972, 17424, 19008, 20736, 161051, 175692, 191664, 209088, 228096, 248832, 1771561, 1932612, 2108304, 2299968, 2509056, 2737152, 2985984, 19487171, 21258732, 23191344, 25299648
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 28 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108218 n = a108218_list !! (n-1)
    a108218_list = f $ singleton (1,0,0) where
       f s = y : f (insert (11 * y, i + 1, j) $ insert (12 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    With[{max = 3*10^7}, Flatten[Table[11^i*12^j, {i, 0, Log[11, max]}, {j, 0, Log[12, max/11^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)

Formula

Sum_{n>=1} 1/a(n) = 6/5. - Amiram Eldar, Mar 29 2025
Showing 1-3 of 3 results.