cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108242 a(n) is the number of coverings of 1..n by cyclic words of length 3, such that each value from 1 to n appears precisely 3 times. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,1,2,2,2,...,n,n,n}. Repeats of words are allowed in a given covering.

Original entry on oeis.org

1, 1, 2, 16, 256, 7184, 311944, 19191448, 1584972224, 169021538944, 22595033625856, 3699135711988736, 727774085471066752, 169399730544125355136, 46039989792346454771456, 14447317177670702438831104, 5183889091511674280049885184, 2108937872584292649560886222848
Offset: 0

Views

Author

Marni Mishna, Jun 17 2005

Keywords

Comments

The asymptotic growth of the coefficients is a(n) ~ C (3/2)^n (n!)^2 /n with C approx 0.277.
In closed form, C = sqrt(3)/(2*Pi) = 0.27566444771089602475566324915648472... . - Vaclav Kotesovec, Feb 28 2016

Examples

			a(2)=2 because the two cyclic word coverings are {112, 221} and {111, 222}
a(3)=16: {111 222 333} {111 223 233} {112 122 333} {112 133 223} {113 122 233} {113 123 223} {113 132 223} {112 132 233} {113 133 222} {122 123 133} {122 132 133} {112 123 233} {123 123 123} {123 132 123} {123 132 132} {132 132 132}
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{-(-10 + n) (-9 + n) (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (25 - 243 n + 243 n^2) a[-11 + n] + 90 (-9 + n) (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-10 + n] - 6 (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (52 - 270 n + 243 n^2) a[-9 + n] + 6 (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-40 + 1240 n - 1458 n^2 + 243 n^3) a[-8 + n] - (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-917 - 3537 n + 3159 n^2) a[-7 + n] + 6 (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-711 + 4555 n - 4941 n^2 + 972 n^3) a[-6 + n] - 9 (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-110 - 3557 n + 5128 n^2 - 1944 n^3 + 243 n^4) a[-5 + n] + 6 (-3 + n) (-2 + n) (-1 + n) (-508 + 4580 n - 5022 n^2 + 1215 n^3) a[-4 + n] - 6 (-2 + n) (-1 + n) (692 - 6471 n + 9309 n^2 - 4374 n^3 + 729 n^4) a[-3 + n] + 6 (-1 + n) (-92 + 2798 n - 3726 n^2 + 1215 n^3) a[-2 + n] - 3 (482 - 2451 n + 4206 n^2 - 2916 n^3 + 729 n^4) a[-1 + n] + 6 (511 - 729 n + 243 n^2) a[n] == 0, a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 16, a[4] == 256, a[5] == 7184, a[6] == 311944, a[7] == 19191448, a[8] == 1584972224, a[9] == 169021538944, a[10] == 22595033625856}, a, {n, 0, 20}] (* Vaclav Kotesovec, Feb 28 2016 *)

Formula

Exponential generating function satisfies the linear differential equation: {(6 + 499*t^6 + 270*t^4 + 408*t^8 - 162*t^11 - 558*t^9 - 12*t - 96*t^3 + 66*t^2 - 654*t^7 + 60*t^12 + 154*t^10 - 342*t^5 + 9*t^14)*F(t) + (81*t^10 + 72*t^4 + 198*t^6 + 216*t^8 + 9*t^2)*(d^2/dt^2)F(t) + (-474*t^6 - 252*t^10 - 6 + 126*t^3 + 594*t^7 - 66*t^2 + 324*t^9 - 54*t^12 - 420*t^8 + 18*t - 264*t^4 + 378*t^5)*(d/dt)F(t), F(0) = 1}
The a(n) satisfy the recurrence: {a(0) = 1, a(1) = 1, ( - 20779902*n^7 - 134970693*n^6 - 1971620508*n^4 - 2248389*n^8 - 3*n^12 - 4459328640*n - 4242044664*n^3 - 5794678656*n^2 - 618210450*n^5 - 234*n^11 - 1437004800 - 8151*n^10 - 167310*n^9)*a(n) + ( - 7295434560*n - 4550515200 - 914850*n^7 - 5131406304*n^2 - 545289740*n^4 - 2088314700*n^3 - 11400627*n^6 - 95574465*n^5 - 1425*n^9 - 47310*n^8 - 19*n^10)*a(n + 2) + (711103032*n^4 + 8622028800 + 13032306*n^6 + 116250876*n^5 + 2944635984*n^3 + 12385923840*n + 7897844736*n^2 + 18*n^10 + 1404*n^9 + 48708*n^8 + 989496*n^7)*a(n + 3) + ( - 915980400*n - 898128000 - 3060*n^7 - 90090*n^6 - 1499400*n^5 - 15424605*n^4 - 100395540*n^3 - 403611660*n^2 - 45*n^8)*a(n + 4) + (2882376*n^5 + 890994600*n^2 + 2137510944*n + 30916662*n^4 + 210700728*n^3 + 166740*n^6 + 5472*n^7 + 78*n^8 + 2227357440)*a(n + 5) + ( - 1050477120 - 60979*n^6 - 1088733*n^5 - 12105088*n^4 - 27*n^8 - 85853091*n^3 - 379422466*n^2 - 955621272*n - 1944*n^7)*a(n + 6) + (57398400*n + 114*n^6 + 91238400 + 161430*n^4 + 2078100*n^3 + 14985456*n^2 + 6660*n^5)*a(n + 7) + ( - 1225827*n^3 - 58806000 - 63*n^6 - 9078336*n^2 - 92961*n^4 - 3753*n^5 - 35812260*n)*a(n + 8) + (571080*n + 1504800 + 5100*n^3 + 120*n^4 + 81060*n^2)*a(n + 9) + ( - 233178*n - 635976 - 32079*n^2 - 1962*n^3 - 45*n^4)*a(n + 10) + (1116*n + 48*n^2 + 6480)*a(n + 11) + ( - 225*n - 9*n^2 - 1410)*a(n + 12) + 6*a(n + 13) = 0,
with a(2) = 2, a(3) = 16, a(4) = 256, a(5) = 7184, a(6) = 311944, a(7) = 19191448, a(8) = 1584972224, a(9) = 169021538944, a(10) = 22595033625856, a(11) = 3699135711988736, a(12) = 727774085471066752}

Extensions

More terms from Vaclav Kotesovec, Feb 28 2016