A108263 Triangle read by rows: T(n,k) is the number of short bushes with n edges and k branchnodes (i.e., nodes of outdegree at least two). A short bush is an ordered tree with no nodes of outdegree 1.
1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 5, 0, 1, 9, 5, 0, 1, 14, 21, 0, 1, 20, 56, 14, 0, 1, 27, 120, 84, 0, 1, 35, 225, 300, 42, 0, 1, 44, 385, 825, 330, 0, 1, 54, 616, 1925, 1485, 132, 0, 1, 65, 936, 4004, 5005, 1287, 0, 1, 77, 1365, 7644, 14014, 7007, 429, 0, 1, 90, 1925, 13650, 34398
Offset: 0
Examples
T(6,3)=5 because the only short bushes with 6 edges and 3 branchnodes are the five full binary trees with 6 edges. Triangle begins: 1; 0; 0,1; 0,1; 0,1,2; 0,1,5; 0,1,9,5
Links
- Indranil Ghosh, Rows 0..100, flattened
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362, 2012
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 10.
Crossrefs
Programs
-
Maple
G:=(1+z-sqrt((1-z)^2-4*t*z^2))/2/z/(1+t*z): Gser:=simplify(series(G,z=0,18)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od; # yields sequence in triangular form A108263 := (n,k) -> binomial(n-k-1,n-2*k)*binomial(n,k)/(n-k+1); seq(print(seq(A108263(n,k),k=0..ceil((n-1)/2))),n=0..8); # Peter Luschny, Sep 25 2014
-
Mathematica
T[n_,k_]:=Binomial[n-k-1,n-2k]*Binomial[n,k]/(n-k+1); Flatten[Table[T[n,k],{n,0,11},{k,0,Ceiling[(n-1)/2]}]] (* Indranil Ghosh, Feb 20 2017 *)
Formula
G.f. G=G(t, z) satisfies z*(1+t*z)*G^2 - (1+z)*G + 1 = 0.
T(n, k) = A086810(n-k, k). - Philippe Deléham, May 30 2005
Comments