cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A086810 Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0

Views

Author

Philippe Deléham, Aug 05 2003

Keywords

Comments

Mirror image of triangle A133336. - Philippe Deléham, Dec 10 2008
From Tom Copeland, Oct 09 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 2 t^2
P(4,t) = t + 5 t^2 + 5 t^3
P(5,t) = t + 9 t^2 + 21 t^3 + 14 t^4
The o.g.f. A(x,t) = {1+x-sqrt[(1-x)^2-4xt]}/[2(1+t)] (see Drake et al.).
B(x,t)= x-t x^2/(1-x)= x-t(x^2+x^3+x^4+...) is the comp. inverse in x.
Let h(x,t) = 1/(dB/dx) = (1-x)^2/(1+(1+t)*x*(x-2)) = 1/(1-t(2x+3x^2+4x^3+...)), an o.g.f. in x for row polynomials in t of A181289. Then P(n,t) is given by (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A = exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). These results are a special case of A133437 with u(x,t) = B(x,t), i.e., u_1=1 and (u_n)=-t for n > 1. See A001003 for t = 1. (End)
Let U(x,t) = [A(x,t)-x]/t, then U(x,0) = -dB(x,t)/dt and U satisfies dU/dt = UdU/dx, the inviscid Burgers' equation (Wikipedia), also called the Hopf equation (see Buchstaber et al.). Also U(x,t) = U(A(x,t),0) = U(x+tU,0) since U(x,0) = [x-B(x,t)]/t. - Tom Copeland, Mar 12 2012
Diagonals of A132081 are essentially rows of this sequence. - Tom Copeland, May 08 2012
T(r, s) is the number of [0,r]-covering hierarchies with s segments (see Kreweras). - Michel Marcus, Nov 22 2014
From Yu Hin Au, Dec 07 2019: (Start)
T(n,k) is the number of small Schröder n-paths (lattice paths from (0,0) to (2n,0) using steps U=(1,1), F=(2,0), D=(1,-1) with no F step on the x-axis) that has exactly k U steps.
T(n,k) is the number of Schröder trees (plane rooted tree where each internal node has at least two children) with exactly n+1 leaves and k internal nodes. (End)

Examples

			Triangle starts:
  1;
  0,  1;
  0,  1,  2;
  0,  1,  5,  5;
  0,  1,  9, 21, 14;
  ...
		

Crossrefs

The diagonals (except for A000007) are also the diagonals of A033282.
Row sums: A001003 (Schroeder numbers).

Programs

  • Mathematica
    Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
    Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
  • PARI
    t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014

Formula

Triangle T(n, k) read by rows; given by [0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
For k>0, T(n, k) = binomial(n-1, k-1)*binomial(n+k, k)/(n+1); T(0, 0) = 1 and T(n, 0) = 0 if n > 0. [corrected by Marko Riedel, May 04 2023]
Sum_{k>=0} T(n, k)*2^k = A107841(n). - Philippe Deléham, May 26 2005
Sum_{k>=0} T(n-k, k) = A005043(n). - Philippe Deléham, May 30 2005
T(n, k) = A108263(n+k, k). - Philippe Deléham, May 30 2005
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*5^k*(-2)^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A154825(n). - Philippe Deléham, Jan 17 2009
Umbrally, P(n,t) = Lah[n-1,-t*a.]/n! = (1/n)*Sum_{k=1..n-1} binomial(n-2,k-1)a_k t^k/k!, where (a.)^k = a_k = (n-1+k)!/(n-1)!, the rising factorial, and Lah(n,t) = n!*Laguerre(n,-1,t) are the Lah polynomials A008297 related to the Laguerre polynomials of order -1. - Tom Copeland, Oct 04 2014
T(n, k) = binomial(n, k)*binomial(n+k, k-1)/n, for k >= 0; T(0, 0) = 1 (see Kreweras, p. 21). - Michel Marcus, Nov 22 2014
P(n,t) = Lah[n-1,-:Dt:]/n! t^(n-1) with (:Dt:)^k = (d/dt)^k t^k = k! Laguerre(k,0,-:tD:) with (:tD:)^j = t^j D^j. The normalized Laguerre polynomials of 0 order are given in A021009. - Tom Copeland, Aug 22 2016

Extensions

Typo in a(60) corrected by Michael De Vlieger, Nov 21 2019

A100754 Triangle read by rows: T(n, k) = number of hill-free Dyck paths (i.e., no peaks at height 1) of semilength n and having k peaks.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 29, 13, 1, 1, 19, 73, 73, 19, 1, 1, 26, 151, 266, 151, 26, 1, 1, 34, 276, 749, 749, 276, 34, 1, 1, 43, 463, 1781, 2762, 1781, 463, 43, 1, 1, 53, 729, 3758, 8321, 8321, 3758, 729, 53, 1, 1, 64, 1093, 7253, 21659, 31004, 21659, 7253, 1093, 64, 1
Offset: 2

Views

Author

Emeric Deutsch, Jan 14 2005

Keywords

Comments

Row n has n - 1 terms. Row sums yield the Fine numbers (A000957).
Related to the number of certain sets of non-crossing partitions for the root system A_n (p. 11, Athanasiadis and Savvidou). - Tom Copeland, Oct 19 2014
T(n,k) is the number of permutations pi of [n-1] with k - 1 descents such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
The absolute values of the polynomials at -1 and j (cube root of 1) seem to be given by A126120 and A005043. - F. Chapoton, Nov 16 2021
Don Knuth observes that this sequence also arrises from the enumeration of restricted max-and-min-closed relations, only there it appears as an array read by antidiagonals: see the Knuth "Notes" link and A372068. Knuth also gives a formula expressing the array A372368 in terms of this array. He also reports that there is strong experimental evidence that the n-th term of row m in this array is a polynomial of degree 2*m-2 in n. - N. J. A. Sloane, May 12 2024

Examples

			T(4, 2) = 4 because we have UU*DDUU*DD, UU*DUU*DDD, UUU*DDU*DD and UUU*DU*DDD, where U = (1, 1), D = (1,-1) and * indicates the peaks.
Triangle starts:
   1;
   1,  1;
   1,  4,   1;
   1,  8,   8,    1;
   1, 13,  29,   13,    1;
   1, 19,  73,   73,   19,    1;
   1, 26, 151,  266,  151,   26,    1;
   1, 34, 276,  749,  749,  276,   34,   1;
   1, 43, 463, 1781, 2762, 1781,  463,  43,  1;
   1, 53, 729, 3758, 8321, 8321, 3758, 729, 53, 1;
   ...
As an array (for which the rows of the preceding triangle are the antidiagonals):
   1,  1,    1,     1,      1,      1,       1,        1,        1, ...
   1,  4,    8,    13,     19,     26,      34,       43,       53, ...
   1,  8,   29,    73,    151,    276,     463,      729,     1093, ...
   1, 13,   73,   266,    749,   1781,    3758,     7253,    13061, ...
   1, 19,  151,   749,   2762,   8321,   21659,    50471,   107833, ...
   1, 26,  276,  1781,   8321,  31004,   97754,   271125,   679355, ...
   1, 34,  463,  3758,  21659,  97754,  367285,  1196665,  3478915, ...
   1, 43,  729,  7253,  50471, 271125, 1196665,  4526470, 15118415, ...
   1, 53, 1093, 13061, 107833, 679355, 3478915, 15118415, 57500480, ...
   ...
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> add((j/(n-j))*binomial(n-j, k-j)*binomial(n-j,k), j=0..min(k,n-k)): for n from 2 to 13 do seq(T(n, k), k = 1..n-1) od; # yields the sequence in triangular form
  • Mathematica
    T[n_, k_] := Sum[(j/(n-j))*Binomial[n-j, k-j]*Binomial[n-j, k], {j, 0, Min[k, n-k]}]; Table[T[n, k], {n, 2, 13}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n, k) = Sum_{j=0..min(k, n-k)} (j/(n-j)) * C(n-j, k-j) * C(n-j, k), n >= 2.
G.f.: t*z*r/(1 - t*z*r), where r = r(t, z) is the Narayana function defined by r = z*(1 + r)*(1 + t*r).
From Tom Copeland, Oct 19 2014: (Start)
With offset 0 for A108263 and offset 1 for A132081, row polynomials of this entry P(n, x) = Sum_{i} A108263(n, i)*x^i*(1 + x)^(n - 2*i) = Sum_{i} A132081(n - 2, i)*x^i*(1 + x)^(n - 2*i).
E.g., P(4, x) = 1*x*(1 + x)^(4 - 2*1) + 2*x^2*(1 + x)^(4 - 2*2) = x + 4*x^2 + x^3.
Equivalently, let Q(n, x) be the row polynomials of A108263. Then P(n, x) = (1 + x)^n * Q(n, x/(1 + x)^2).
E.g., P(4, x) = (1 + x)^4 * (x/(1 + x)^2 + 2 * (x/(1 + x)^2)^2).
See Athanasiadis and Savvidou (p. 7). (End)

A033275 Number of diagonal dissections of an n-gon into 3 regions.

Original entry on oeis.org

0, 5, 21, 56, 120, 225, 385, 616, 936, 1365, 1925, 2640, 3536, 4641, 5985, 7600, 9520, 11781, 14421, 17480, 21000, 25025, 29601, 34776, 40600, 47125, 54405, 62496, 71456, 81345, 92225, 104160, 117216, 131461, 146965, 163800, 182040, 201761, 223041, 245960
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-3,2,2) (n>=5). - Emeric Deutsch, May 13 2004
Number of short bushes with n+1 edges and 3 branch nodes (i.e., nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(5)=5 because the only short bushes with 6 edges and 3 branch nodes are the five full binary trees with 6 edges. Column 3 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

2nd skew subdiagonal of A033282.

Programs

  • Mathematica
    a[4]=0; a[n_]:=Binomial[n+1,2]*Binomial[n-3,2]/3; Table[a[n],{n,4,43}] (* Indranil Ghosh, Feb 20 2017 *)
  • PARI
    concat(0, Vec(z^5*(5-4*z+z^2)/(1-z)^5 + O(z^60))) \\ Michel Marcus, Jun 18 2015
    
  • PARI
    a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3 \\ Charles R Greathouse IV, Feb 20 2017
    
  • Sage
    def A033275(n): return (binomial(n+1, 2)*binomial(n-3, 2))//3
    print([A033275(n) for n in range(4,50)]) # Peter Luschny, Apr 03 2020

Formula

a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3.
G.f.: z^5*(5-4*z+z^2)/(1-z)^5. - Emeric Deutsch, May 29 2005
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=5} 1/a(n) = 43/150.
Sum_{n>=5} (-1)^(n+1)/a(n) = 16*log(2)/5 - 154/75. (End)
E.g.f.: x*(exp(x)*(12 - 6*x + x^3) - 6*(2 + x))/12. - Stefano Spezia, Feb 21 2024

A132081 Triangle (read by rows) with row sums = Motzkin sums (also called Riordan numbers) (A005043): T(n,s) = (1/n)*C(n,s)*(C(n-s,s+1) - C(n-s-2,s-1)).

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 9, 5, 1, 14, 21, 1, 20, 56, 14, 1, 27, 120, 84, 1, 35, 225, 300, 42, 1, 44, 385, 825, 330, 1, 54, 616, 1925, 1485, 132, 1, 65, 936, 4004, 5005, 1287, 1, 77, 1365, 7644, 14014, 7007, 429
Offset: 3

Views

Author

Frank R. Bernhart (farb45(AT)gmail.com), Oct 30 2007

Keywords

Comments

Whereas A005043 counts certain trees, or noncrossed partitions, this subdivides the counts according to the number of leaves, or the lattice rank. Analogous to the Narayana triangle (A001263), where rows sum to the Catalan numbers.
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
Related to the number of certain non-crossing partitions for the root system A_n. Cf. p. 12, Athanasiadis and Savvidou. See also A108263 and A100754. - Tom Copeland, Oct 19 2014

Examples

			A005043(6) = 15 = 1+9+5 since NC (noncrossed, planar) partitions of 6-point cycle without singletons have 1,9,5 items with 1,2,3 blocks.
Triangle begins:
  1;
  1,   2;
  1,   5;
  1,   9,   5;
  1,  14,  21;
  1,  20,  56,  14;
  1,  27, 120,  84;
  1,  35, 225, 300,  42;
  1,  44, 385, 825, 330;
  ...
		

Crossrefs

Programs

  • Magma
    /* triangle excluding 0 */ [[Binomial(n,k)*Binomial(n-2-k,k)/(k+1): k in [0..n-3]]: n in [3..15]]; // Vincenzo Librandi, Oct 19 2014
  • Mathematica
    Map[Most, Table[(1/n) Binomial[n, s] (Binomial[n - s, s + 1] - Binomial[n - s - 2, s - 1]), {n, 3, 14}, {s, 0, n}] /. k_ /; k <= 0 -> Nothing] // Flatten (* Michael De Vlieger, Jan 09 2016 *)

Formula

a(n,k) = binomial(n,k)*binomial(n-2-k,k)/(k+1). - David Callan, Jul 22 2008
From Peter Bala, Oct 22 2008: (Start)
O.g.f.: (1 + x - sqrt(1 - 2*x + x^2*(1 - 4*a)))/(2*x*(1 + a*x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . [corrected by Jason Yuen, Sep 22 2024]
Define a functional I on formal power series of the form f(x) = 1 + a*x + b*x^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim n -> infinity f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let now f(x) = 1 + a*x^2 + a*x^3 + a*x^4 + ... . Then the o.g.f. for this table is I(f(x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . Cf. A001263 and A108767. (End)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Name corrected by Emeric Deutsch, Dec 20 2014

A350248 Triangle read by rows: T(n,k) is the number of noncrossing partitions of an n-set into k blocks of size 3 or more, n >= 0, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 7, 0, 1, 12, 0, 1, 18, 12, 0, 1, 25, 45, 0, 1, 33, 110, 0, 1, 42, 220, 55, 0, 1, 52, 390, 286, 0, 1, 63, 637, 910, 0, 1, 75, 980, 2275, 273, 0, 1, 88, 1440, 4900, 1820, 0, 1, 102, 2040, 9520, 7140, 0, 1, 117, 2805, 17136, 21420, 1428
Offset: 0

Views

Author

Andrew Howroyd and Janaka Rodrigo, Dec 21 2021

Keywords

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1,   3;
  0, 1,   7;
  0, 1,  12;
  0, 1,  18,   12;
  0, 1,  25,   45;
  0, 1,  33,  110;
  0, 1,  42,  220,   55;
  0, 1,  52,  390,  286;
  0, 1,  63,  637,  910;
  0, 1,  75,  980, 2275,  273;
  0, 1,  88, 1440, 4900, 1820;
  0, 1, 102, 2040, 9520, 7140;
  ...
		

Crossrefs

Columns k=2..5 are A055998, A350116, A350286, A350303.
Row sums are A114997.
Cf. A001263 (blocks of any size), A108263 (blocks of size 2 or more).

Programs

  • PARI
    T(n)={my(p=1+O(x^3)); for(i=1, n\3, p=1+y*(x*p)^3/(1-x*p)); [Vecrev(t)| t<-Vec(p + O(x*x^n))]}
    {my(A=T(12)); for(i=1, #A, print(A[i]))}
    
  • PARI
    T(n,k) = if(n==0 || k>n\3, k==0, binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1)) \\ Andrew Howroyd, Dec 31 2021

Formula

G.f.: A(x,y) satisfies A(x,y) = 1 + y*(x*A(x,y))^3/(1 - x*A(x,y)).
T(n,k) = binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1) for n > 0.

A033276 Number of diagonal dissections of an n-gon into 4 regions.

Original entry on oeis.org

0, 14, 84, 300, 825, 1925, 4004, 7644, 13650, 23100, 37400, 58344, 88179, 129675, 186200, 261800, 361284, 490314, 655500, 864500, 1126125, 1450449, 1848924, 2334500, 2921750, 3627000, 4468464, 5466384, 6643175, 8023575, 9634800, 11506704, 13671944
Offset: 5

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-4,2,2,2) (n>=6). - Emeric Deutsch, May 20 2004
Number of short bushes with n+2 edges and 4 branch nodes (i.e. nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(6)=14 because the only short bushes with 8 edges and 4 branch nodes are the fourteen full binary trees with 8 edges. Column 4 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

Programs

  • Magma
    [(Binomial(n+2,3)*Binomial(n-3,3))/4: n in [5..50]]; // Vincenzo Librandi, Mar 15 2014
  • Mathematica
    Table[(Binomial[n+2,3]Binomial[n-3,3])/4,{n,5,40}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,14,84,300,825,1925,4004},40] (* Harvey P. Dale, Mar 13 2014 *)
    CoefficientList[Series[x (14 - 14 x + 6 x^2 - x^3)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)

Formula

a(n) = binomial(n+2, 3)*binomial(n-3, 3)/4.
G.f.: x^6*(14-14x+6x^2-x^3)/(1-x)^7. - Emeric Deutsch, May 29 2005
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=6} 1/a(n) = 109/1225.
Sum_{n>=6} (-1)^n/a(n) = 192*log(2)/35 - 4582/1225. (End)

Extensions

More terms from Vincenzo Librandi, Mar 15 2014

A033278 Number of diagonal dissections of an n-gon into 6 regions.

Original entry on oeis.org

0, 132, 1287, 7007, 28028, 91728, 259896, 659736, 1534896, 3325608, 6789783, 13180167, 24496472, 43835792, 75869640, 127481640, 208606320, 333316620, 521215695, 799197399, 1203649524, 1783184480, 2601993680, 3743934480, 5317472160, 7461614160, 10352989647
Offset: 7

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-6,2,2,2,2,2) (n>=8). - Emeric Deutsch, May 20 2004
Number of short bushes with n+4 edges and 6 branch nodes (i. e. nodes with outdegree at least 2; a short bush is an ordered tree with no nodes of outdegree 1). Example: a(8)=132 because the only short bushes with 12 edges and 6 branch nodes are the one-hundred-thirty-two full binary trees with 12 edges. Column 6 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

Cf. A108263.

Programs

  • PARI
    vector(40, n, n+=6; binomial(n+4, 5)*binomial(n-3, 5)/6) \\ Michel Marcus, Jun 18 2015

Formula

a(n) = binomial(n+4, 5)*binomial(n-3, 5)/6.
G.f.: z^8(132-165z+110z^2-44z^3+10z^4-z^5)/(1-z)^11. - Emeric Deutsch, May 29 2005

A033279 Number of diagonal dissections of an n-gon into 7 regions.

Original entry on oeis.org

0, 429, 5005, 32032, 148512, 556920, 1790712, 5116320, 13302432, 32008977, 72177105, 153977824, 313112800, 610569960, 1147334760, 2086063200, 3682355040, 6329047725, 10617908301, 17424259776, 28021470400, 44233892560, 68638798800, 104830165440, 157759842240
Offset: 8

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-7,2,2,2,2,2,2) (n>=9). - Emeric Deutsch, May 21 2004
Number of short bushes with n+5 edges and 7 branch nodes (i.e. nodes with outdegree at least 2; a short bush is an ordered tree with no nodes of outdegree 1). Example: a(9)=429 because the only short bushes with 14 edges and 7 branch nodes are the four-hundred-twenty-nine full binary trees with 14 edges. Column 7 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

Cf. A108263.

Programs

  • Mathematica
    Table[(Binomial[n+5,6]Binomial[n-3,6])/7,{n,8,40}] (* Harvey P. Dale, May 27 2013 *)
  • PARI
    vector(40, n, n+=7; binomial(n+5, 6)*binomial(n-3, 6)/7) \\ Michel Marcus, Jun 18 2015

Formula

a(n) = binomial(n+5, 6)*binomial(n-3, 6)/7.
G.f.: z^9(429-572z+429z^2-208z^3+65z^4-12z^5+z^6)/(1-z)^13. - Emeric Deutsch, May 29 2005

A033277 Number of diagonal dissections of an n-gon into 5 regions.

Original entry on oeis.org

0, 42, 330, 1485, 5005, 14014, 34398, 76440, 157080, 302940, 554268, 969969, 1633905, 2662660, 4214980, 6503112, 9806280, 14486550, 21007350, 29954925, 42063021, 58241106, 79606450, 107520400, 143629200, 189909720, 248720472, 322858305, 415621185, 530877480
Offset: 6

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-5,2,2,2,2) (n>=7). - Emeric Deutsch, May 20 2004
Number of short bushes with n+3 edges and 5 branch nodes (i.e. nodes with outdegree at least 2; a short bush is an ordered tree with no nodes of outdegree 1). Example: a(7)=42 because the only short bushes with 10 edges and 5 branch nodes are the fortytwo full binary trees with 10 edges. Column 5 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

Cf. A108263.

Programs

  • PARI
    vector(40, n, n+=5; binomial(n+3, 4)*binomial(n-3, 4)/5) \\ Michel Marcus, Jun 18 2015

Formula

a(n) = binomial(n+3, 4)*binomial(n-3, 4)/5.
G.f.: z^7(42-48z+27z^2-8z^3+z^4)/(1-z)^9. - Emeric Deutsch, May 29 2005
Showing 1-9 of 9 results.