A033282 Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.
1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512, 143208, 75582, 16796
Offset: 3
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 3: 1 4: 1 2 5: 1 5 5 6: 1 9 21 14 7: 1 14 56 84 42 8: 1 20 120 300 330 132 9: 1 27 225 825 1485 1287 429 10: 1 35 385 1925 5005 7007 5005 1430 11: 1 44 616 4004 14014 28028 32032 19448 4862 12: 1 54 936 7644 34398 91728 148512 143208 75582 16796 ... reformatted. - _Wolfdieter Lang_, Mar 17 2017
References
- S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See p. 241.)
- Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.50, pages 379, 573.
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.8.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..2000
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Karin Baur and P. P. Martin, The fibres of the Scott map on polygon tilings are the flip equivalence classes, arXiv:1601.05080 [math.CO], 2016.
- David Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, 105 (1998), 256-257.
- William Butler, Andrew Kalotay and N. J. A. Sloane, Correspondence, 1974
- Arthur Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. (See p. 239.)
- Adrian Celestino and Yannic Vargas, Schröder trees, antipode formulas and non-commutative probability, arXiv:2311.07824 [math.CO], 2023.
- Frédéric Chapoton, Enumerative properties of generalized associahedra, Séminaire Lotharingien de Combinatoire, B51b (2004), 16 pp.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 16.
- Jesús A. De Loera, Jörg Rambau, and Francisco Santos Leal, Triangulations of Point Sets [From Tom Copeland Oct 11 2011]
- Satyan L. Devadoss, Combinatorial Equivalence of Real Moduli Spaces, Notices Amer. Math. Soc. 51 (2004), no. 6, 620-628.
- Satyan L. Devadoss and Ronald C. Read, Cellular structures determined by polygons and trees, arXiv/0008145 [math.CO], 2000. [From Tom Copeland Nov 21 2017]
- Anton Dochtermann, Face rings of cycles, associahedra, and standard Young tableaux, arXiv preprint arXiv:1503.06243 [math.CO], 2015.
- Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
- Cassandra Durell and Stefan Forcey, Level-1 Phylogenetic Networks and their Balanced Minimum Evolution Polytopes, arXiv:1905.09160 [math.CO], 2019.
- P. Flajolet and M. Noy, Analytic Combinatorics of Non-crossing Configurations, Discrete Math., 204, 1999, 203-229.
- Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005-2008. [From _Peter Bala_, Oct 28 2008]
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras I: Foundations, arXiv:math/0104151 [math.RT], 2001.
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002) no.2, 497-529.
- Sergey Fomin and Andrei Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- Rijun Huang, Fei Teng, and Bo Feng, Permutation in the CHY-Formulation, arXiv:1801.08965 [hep-th], 2018.
- Germain Kreweras, Sur les partitions non croisées d'un cycle, (French) Discrete Math. 1 (1972), no. 4, 333--350. MR0309747 (46 #8852).
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Thibault Manneville and Vincent Pilaud, Compatibility fans for graphical nested complexes, arXiv:1501.07152 [math.CO], 2015.
- Sebastian Mizera, Combinatorics and topology of Kawai-Lewellen-Tye relations J. High Energy Phys. 2017, No. 8, Paper No. 97, 54 p. (2017).
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
- Vincent Pilaud and V. Pons, Permutrees, arXiv:1606.09643 [math.CO], 2016-2017.
- Ronald C. Read, On general dissections of a polygon, Aequat. Math. 18 (1978), 370-388.
- Dean Rubine, Exercises for A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, arXiv:2507.13045 [math.CO], 2025. See p. 9.
- Rodica Simion, Convex Polytopes and Enumeration, Adv. in Appl. Math. 18 (1997) pp. 149-180.
- Richard P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996.
- Rekha R. Thomas, Lectures in Geometric Combinatorics [_Tom Copeland_, Oct 11 2011]
Crossrefs
Cf. diagonals: A000012, A000096, A033275, A033276, A033277, A033278, A033279; A000108, A002054, A002055, A002056, A007160, A033280, A033281; row sums: A001003 (Schroeder numbers, first term omitted). See A086810 for another version.
With leading zero: A086810.
Cf. A019538 'faces' of the permutohedron.
Cf. A063007 (f-vectors type B associahedra), A080721 (f-vectors type D associahedra), A126216 (mirror image).
Cf. A248727 for a relation to f-polynomials of simplices.
Cf. A111785 (contracted partition array, unsigned; see a comment above).
Antidiagonal sums give A005043. - Jordan Tirrell, Jun 01 2017
Programs
-
Magma
[[Binomial(n-3, k)*Binomial(n+k-1, k)/(k+1): k in [0..(n-3)]]: n in [3..12]]; // G. C. Greubel, Nov 19 2018
-
Maple
T:=(n,k)->binomial(n-3,k)*binomial(n+k-1,k)/(k+1): seq(seq(T(n,k),k=0..n-3),n=3..12); # Muniru A Asiru, Nov 24 2018
-
Mathematica
t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1); Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* Jean-François Alcover, Jun 16 2011 *)
-
PARI
Q=(1+z-(1-(4*w+2+O(w^20))*z+z^2+O(z^20))^(1/2))/(2*(1+w)*z);for(n=3,12,for(m=1,n-2,print1(polcoef(polcoef(Q,n-2,z),m,w),", "))) \\ Hugo Pfoertner, Nov 19 2018
-
PARI
for(n=3,12, for(k=0,n-3, print1(binomial(n-3,k)*binomial(n+k-1,k)/(k+1), ", "))) \\ G. C. Greubel, Nov 19 2018
-
Sage
[[ binomial(n-3,k)*binomial(n+k-1,k)/(k+1) for k in (0..(n-3))] for n in (3..12)] # G. C. Greubel, Nov 19 2018
Formula
G.f. G = G(t, z) satisfies (1+t)*G^2 - z*(1-z-2*t*z)*G + t*z^4 = 0.
T(n, k) = binomial(n-3, k)*binomial(n+k-1, k)/(k+1) for n >= 3, 0 <= k <= n-3.
From Tom Copeland, Nov 03 2008: (Start)
Two g.f.s (f1 and f2) for A033282 and their inverses (x1 and x2) can be derived from the Drake and Barry references.
1. a: f1(x,t) = y = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/[2x (t+1)] = t x + (t + 2 t^2) x^2 + (t + 5 t^2 + 5 t^3) x^3 + ...
b: x1 = y/[t + (2t+1)y + (t+1)y^2] = y {1/[t/(t+1) + y] - 1/(1+y)} = (y/t) - (1+2t)(y/t)^2 + (1+ 3t + 3t^2)(y/t)^3 +...
2. a: f2(x,t) = y = {1 - x - sqrt[(1-x)^2 - 4xt]}/[2(t+1)] = (t/(t+1)) x + t x^2 + (t + 2 t^2) x^3 + (t + 5 t^2 + 5 t^3) x^4 + ...
b: x2 = y(t+1) [1- y(t+1)]/[t + y(t+1)] = (t+1) (y/t) - (t+1)^3 (y/t)^2 + (t+1)^4 (y/t)^3 + ...
c: y/x2(y,t) = [t/(t+1) + y] / [1- y(t+1)] = t/(t+1) + (1+t) y + (1+t)^2 y^2 + (1+t)^3 y^3 + ...
x2(y,t) can be used along with the Lagrange inversion for an o.g.f. (A133437) to generate A033282 and show that A133437 is a refinement of A033282, i.e., a refinement of the f-polynomials of the associahedra, the Stasheff polytopes.
y/x2(y,t) can be used along with the indirect Lagrange inversion (A134264) to generate A033282 and show that A134264 is a refinement of A001263, i.e., a refinement of the h-polynomials of the associahedra.
f1[x,t](t+1) gives a generator for A088617.
f1[xt,1/t](t+1) gives a generator for A060693, with inverse y/[1 + t + (2+t) y + y^2].
f1[x(t-1),1/(t-1)]t gives a generator for A001263, with inverse y/[t + (1+t) y + y^2].
G.f.: 1/(1-x*y-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-.... (continued fraction). - Paul Barry, Feb 06 2009
Let h(t) = (1-t)^2/(1+(u-1)*(1-t)^2) = 1/(u + 2*t + 3*t^2 + 4*t^3 + ...), then a signed (n-1)-th row polynomial of A033282 is given by u^(2n-1)*(1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=2. The power series expansion of h(t) is related to A181289 (cf. A086810). - Tom Copeland, Sep 06 2011
With a different offset, the row polynomials equal 1/(1 + x)*Integral_{0..x} R(n,t) dt, where R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*t^k are the row polynomials of A063007. - Peter Bala, Jun 23 2016
n-th row polynomial = ( LegendreP(n-1,2*x + 1) - LegendreP(n-3,2*x + 1) )/((4*n - 6)*x*(x + 1)), n >= 3. - Peter Bala, Feb 22 2017
n*T(n+1, k) = (4n-6)*T(n, k-1) + (2n-3)*T(n, k) - (n-3)*T(n-1, k) for n >= 4. - Fang Lixing, May 07 2019
Extensions
Missing factor of 2 for expansions of f1 and f2 added by Tom Copeland, Apr 12 2009
Comments