cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108269 Numbers of the form (2*m - 1)*4^k where m >= 1, k >= 1.

Original entry on oeis.org

4, 12, 16, 20, 28, 36, 44, 48, 52, 60, 64, 68, 76, 80, 84, 92, 100, 108, 112, 116, 124, 132, 140, 144, 148, 156, 164, 172, 176, 180, 188, 192, 196, 204, 208, 212, 220, 228, 236, 240, 244, 252, 256, 260, 268, 272, 276, 284, 292, 300, 304, 308, 316, 320, 324, 332
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 30 2005

Keywords

Comments

Numbers of terms in nonnegative integer sequences the sum of which is never a square.
The sum of a sequence of consecutive nonnegative integers starting with k is never a square for any k, if and only if the number of the terms in the sequence can be expressed as (2*m - 1) * 2^(2*n), m and n being any positive integers. (Proved by Alfred Vella, Jun 14 2005.)
Odious and evil terms alternate. - Vladimir Shevelev, Jun 22 2009
Even numbers whose binary representation ends in an even number of zeros. - Amiram Eldar, Jan 12 2021
From Antti Karttunen, Jan 28 2023: (Start)
Numbers k for which the parity of k is equal to that of A048675(k).
A multiplicative semigroup; if m and n are in the sequence then so is m*n. (End)

Examples

			a( 1, 1 ) = 4, a( 2, 1) = 12, etc.
For a( 1, 1 ): the sum of 4 consecutive nonnegative integers (4k+6, if the first term is k) is never a square.
		

Crossrefs

Intersection of A005843 and A003159.
Cf. A000069, A001969, A017113 (primitive terms), A036554, A328981 (characteristic function), A359794 (complement).

Programs

  • Mathematica
    Select[2 * Range[200], EvenQ @ IntegerExponent[#, 2] &] (* Amiram Eldar, Jan 12 2021 *)
  • PARI
    is(n)=my(e=valuation(n,2)); e>1 && e%2==0 \\ Charles R Greathouse IV, Nov 03 2016
    
  • Python
    def A108269(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+(x+1>>1), bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c += int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n) # Chai Wah Wu, Jan 29 2025

Formula

a(n) = 6*n + O(log n). - Charles R Greathouse IV, Nov 03 2016 [Corrected by Amiram Eldar, Jan 12 2021]
a(n) = 2 * A036554(n) = 4 * A003159(n). - Amiram Eldar, Jan 12 2021

Extensions

Entry revised by N. J. A. Sloane, Jun 26 2005
More terms from Amiram Eldar, Jan 12 2021