cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253635 Rectangular array read by upwards antidiagonals: a(n,k) = index of largest term <= 10^k in row n of A253572, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 4, 1, 7, 7, 1, 9, 20, 10, 1, 10, 34, 40, 14, 1, 10, 46, 86, 67, 17, 1, 10, 55, 141, 175, 101, 20, 1, 10, 62, 192, 338, 313, 142, 24, 1, 10, 67, 242, 522, 694, 507, 190, 27, 1, 10, 72, 287, 733, 1197, 1273, 768, 244, 30
Offset: 1

Views

Author

L. Edson Jeffery, Jan 07 2015

Keywords

Comments

Or a(n,k) = the number of positive integers less than or equal to 10^k that are divisible by no prime exceeding prime(n).

Examples

			Array begins:
{1,  4,  7,  10,   14,   17,    20,    24,    27,     30, ...}
{1,  7, 20,  40,   67,  101,   142,   190,   244,    306, ...}
{1,  9, 34,  86,  175,  313,   507,   768,  1105,   1530, ...}
{1, 10, 46, 141,  338,  694,  1273,  2155,  3427,   5194, ...}
{1, 10, 55, 192,  522, 1197,  2432,  4520,  7838,  12867, ...}
{1, 10, 62, 242,  733, 1848,  4106,  8289, 15519,  27365, ...}
{1, 10, 67, 287,  945, 2579,  6179, 13389, 26809,  50351, ...}
{1, 10, 72, 331, 1169, 3419,  8751, 20198, 42950,  85411, ...}
{1, 10, 76, 369, 1385, 4298, 11654, 28434, 63768, 133440, ...}
{1, 10, 79, 402, 1581, 5158, 14697, 37627, 88415, 193571, ...}
		

Crossrefs

Programs

  • Mathematica
    r = 10; y[1] = t = Table[2^j, {j, 0, 39}]; max = 10^13; len = 10^10; prev = 0; For[n = 2, n <= r, n++, next = 0; For[k = 1, k <= 43, k++, If[Prime[n]^k < max, t = Union[t, Prime[n]*t]; s = FirstPosition[t, v_ /; v > len, 0]; t = Take[t, s[[1]] - 1]; If[t[[-1]] > len, t = Delete[t, -1]]; next = Length[t]; If[next == prev, Break, prev = next], Break]]; y[n] = t]; b[i_, j_] := FirstPosition[y[i], v_ /; v > 10^j][[1]]; a253635[n_, j_] := If[IntegerQ[b[n, j]], b[n, j] - 1, 0]; Flatten[Table[a253635[n - j, j], {n, r}, {j, 0, n - 1}]] (* array antidiagonals flattened *)

A108277 Number of positive integers <= 10^n that are divisible by no prime exceeding 23.

Original entry on oeis.org

1, 10, 76, 369, 1385, 4298, 11654, 28434, 63768, 133440, 263529, 495412, 892644, 1550012, 2605342, 4254753, 6771752, 10531080, 16038303, 23965659, 35195450, 50872227, 72464493, 101837746, 141340075, 193902062, 263152095, 353549942
Offset: 0

Views

Author

Robert G. Wilson v, May 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 6; t = Select[ Flatten[ Table[23^i*Select[ Flatten[ Table[19^h*Select[ Flatten[ Table[17^g*Select[ Flatten[ Table[13^f*Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, n*Log[2, 10]}, {b, 0, n*Log[3, 10]}]], # <= 10^n &], {c, 0, n*Log[5, 10]}]], # <= 10^n &], {d, 0, n*Log[7, 10]}]], # <= 10^n &], {e, 0, n*Log[11, 10]}]], # <= 10^n &], {f, 0, n*Log[13, 10]}]], # <= 10^n &], {g, 0, n*Log[17, 10]}]], # <= 10^n &], {h, 0, n*Log[19, 10]}]], # <= 10^n &], {i, 0, n*Log[23, 10]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 10}]

Extensions

a(7)-a(18) from Donovan Johnson, Sep 16 2009
a(19)-a(27) from Max Alekseyev, Apr 28 2010
Showing 1-2 of 2 results.