A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].
1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70
Offset: 0
Examples
Triangle begins: 1; 1, -1; 1, -1, -1; 1, -1, -2, 1; 1, -1, -3, 2, 1; 1, -1, -4, 3, 3, -1; 1, -1, -5, 4, 6, -3, -1; 1, -1, -6, 5, 10, -6, -4, 1; 1, -1, -7, 6, 15, -10, -10, 4, 1; 1, -1, -8, 7, 21, -15, -20, 10, 5, -1; 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1; 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1; ...
References
- Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).
- Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- Henry W. Gould, A Variant of Pascal's Triangle, Corrections, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.
- L. Edson Jeffery, Unit-primitive matrices.
- Ju, Hyeong-Kwan On the sequence generated by a certain type of matrices. Honam Math. J. 39, No. 4, 665-675 (2017).
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
- Frank Ruskey and Carla Savage, Gray codes for set partitions and restricted growth tails, Australasian Journal of Combinatorics, Volume 10(1994), pp. 85-96. See Table 1 p. 95.
Crossrefs
Programs
-
Haskell
a108299 n k = a108299_tabl !! n !! k a108299_row n = a108299_tabl !! n a108299_tabl = [1] : iterate (\row -> zipWith (+) (zipWith (*) ([0] ++ row) a033999_list) (zipWith (*) (row ++ [0]) a059841_list)) [1,-1] -- Reinhard Zumkeller, May 06 2012
-
Maple
A108299 := proc(n,k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
-
Mathematica
t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
-
PARI
{T(n,k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)),n,x)+y*O(y^k),k,y)} (Hanna)
Formula
T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2).
T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2).
G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005
The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011
From Johannes W. Meijer, Aug 08 2011: (Start)
Extensions
Corrected and edited by Philippe Deléham, Oct 20 2008
Comments