cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108307 Number of set partitions of {1, ..., n} that avoid enhanced 3-crossings (or enhanced 3-nestings).

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, 348889, 1768483, 9220655, 49286863, 269346822, 1501400222, 8519796094, 49133373040, 287544553912, 1705548000296, 10241669069576, 62201517142632, 381749896129920, 2365758616886432, 14793705539872672
Offset: 0

Views

Author

Keywords

Comments

Also the number of 2-regular 3-noncrossing partitions. There is a bijection from 2-regular 3-noncrossing partitions of n to enhanced partition of n-1. - Jing Qin (qj(AT)cfc.nankai.edu.cn), Oct 30 2007
It appears that this is the number of sequences of length n, starting with a(1) = 1 and 1 <= a(2) <= 2, with 1 <= a(n) <= max(a(n-1),a(n-2)) + 1 for n > 2. - Franklin T. Adams-Watters, May 27 2008
From Eric M. Schmidt, Jul 17 2017: (Start)
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(j) <= e(k) and e(i) >= e(k). [Martinez and Savage, 2.16]
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) >= e(k). [Martinez and Savage, 2.16]
(End)
The second of the above-mentioned conjectures is proved in Zhicong Lin's paper. - Eric M. Schmidt, Nov 25 2017

Examples

			There are 52 partitions of 5 elements, but a(5)=51 because the partition (1,5)(2,4)(3) has an enhanced 3-nesting.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; if n<=1 then 1 elif n=2 then 2 else (8*(n+1) *(n-1) *a(n-2)+ (7*(n-2)^2 +53*(n-2) +88) *a(n-1))/(n+6)/(n+5) fi end: seq(a(n), n=0..20);  # Alois P. Heinz, Sep 05 2008
  • Mathematica
    a[n_] := a[n] = If[n <= 1, 1, If[n==2, 2, (8*(n+1)*(n-1)*a[n-2]+(7*(n-2)^2+53*(n-2)+88)*a[n-1])/(n+6)/(n+5)]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)

Formula

D-finite with recurrence: 8*(n+3)*(n+1)*a(n)+(7*n^2+53*n+88)*a(n+1)-(n+8)*(n+7)*a(n+2)=0. - Jing Qin (qj(AT)cfc.nankai.edu.cn), Oct 26 2007
G.f.: -(6*x^4-15*x^3-7*x^2-11*x-1)/(6*x^5)+(224*x^3-60*x^2+45*x+5) * hypergeom([1/3, 2/3],[2],27*x^2/(1-2*x)^3) / (30*x^5*(2*x-1))+(32*x^2+64*x+5) * hypergeom([2/3, 4/3],[3],27*x^2/(1-2*x)^3)/(5*x^3*(2*x-1)^2). - Mark van Hoeij, Oct 24 2011
a(n) ~ 5*sqrt(3)*2^(3*n+16)/(27*Pi*n^7). - Vaclav Kotesovec, Aug 16 2013
G.f.: (-6*x^4+15*x^3+7*x^2+11*x+1)/(6*x^5)-(1-8*x)^(4/3)*(1+x)^(2/3)*hypergeom([-2/3, 7/3],[2],-27*x/((1+x)*(-1+8*x)^2))/(6*x^5). - Mark van Hoeij, Jul 26 2021

Extensions

Edited by N. J. A. Sloane at the suggestion of Franklin T. Adams-Watters, Apr 27 2008