A108350 Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*((j+1) mod 2).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 32, 21, 6, 1, 1, 7, 31, 65, 65, 31, 7, 1, 1, 8, 43, 116, 161, 116, 43, 8, 1, 1, 9, 57, 189, 341, 341, 189, 57, 9, 1, 1, 10, 73, 288, 645, 842, 645, 288, 73, 10, 1, 1, 11, 91, 417, 1121, 1827, 1827, 1121, 417, 91
Offset: 0
Examples
Triangle rows begin 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 7, 4, 1; 1, 5, 13, 13, 5, 1; 1, 6, 21, 32, 21, 6, 1; As a square array read by antidiagonals, rows begin 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, ... 1, 3, 7, 13, 21, 31, 43, ... 1, 4, 13, 32, 65, 116, 189, ... 1, 5, 21, 65, 161, 341, 645, ... 1, 6, 31, 116, 341, 842, 1827, ... 1, 7, 43, 189, 645, 1827, 4495, ...
Programs
-
PARI
trgn(nn) = {for (n= 0, nn, for (k = 0, n, print1(sum(j=0, n-k, binomial(k,j)*binomial(n-j,k)*((j+1) % 2)), ", ");); print(););} \\ Michel Marcus, Sep 11 2013
Formula
Row k (and column k) has g.f. (1+C(k,2)x^2)/(1-x)^(k+1).
Comments