cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108394 Least k for which f(k) = (1 + f(0)^n + f(1)^n + ... + f(k-1)^n)/k, f(0) = 1, is nonintegral.

Original entry on oeis.org

43, 89, 97, 214, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 94, 73, 19, 243, 141, 101, 53, 811, 47, 1077, 19, 251, 29, 311, 134, 71, 23, 86, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107, 19, 503
Offset: 2

Views

Author

William Rex Marshall, Jul 02 2005

Keywords

Comments

a(n) is known to be finite for n <= 10^14 (Kobayashi and Seki). - Stan Wagon, Dec 13 2024

References

  • Ian Stewart, Professor Stewart's Hoard of Mathematical Treasures, "Life, Recursion and Everything", Basic Books, NY, 2009, p. 239-240.

Crossrefs

First column of A097398.

Programs

  • Maple
    See link.
  • Mathematica
    primes = DeleteCases[Prime[Range[9, PrimePi[11000]]], 41];
    yModPrime[p_, k_] := (i = 1; Nest[(i++;
          Mod[# + PowerMod[(# ModularInverse[i - 1, p]), k, p], p]) &, 2, p - 1]);
    cGen[k_ /; MemberQ[{6, 14}, Mod[k, 18]], _] := 19;
    cGen[k_, M_] := Module[{x = 2, L = M!, n},
       Do[x = Mod[(n - 1) x + PowerMod[x, k, L], L]; L /= n;
        If[Divisible[x, n], x /= n, Return[n, Module]], {n, 2, M}]; ∞];
    cBound[k_, start_ : Automatic] := If[MemberQ[{6, 14}, Mod[k, 18]], 19,
      SelectFirst[If[IntegerQ[start], Select[primes, # ≥ start &], primes],
       yModPrime[#, k] != 0 &]];
    c[k_, start_ : Automatic] := cGen[k, cBound[k, start]];
    c /@ Range[2, 10] (* Marshall Buck, Mark Motley, and Stan Wagon, Dec 13 2024 *)

Formula

Matsuhira, Matsusaka, & Tsuchida prove that a(n) >= 19 and a(n) ≠ 41. - Charles R Greathouse IV, Nov 17 2023