A288676 Numbers k such that A108394(k) is not a prime.
5, 22, 25, 26, 31, 36, 39
Offset: 1
Examples
a(1) = 5. So A288641(5) > A108394(5), that is 251 > 214.
Links
- Eric Weisstein's World of Mathematics, Goebel's Sequence
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1) = 5. So A288641(5) > A108394(5), that is 251 > 214.
a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2.
a:=2: L:=1,1,a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L,a od:L; # Robert FERREOL, Nov 07 2015
a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *) With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *)
A003504(n,s=2)=if(n-->0,for(k=1,n-1,s+=(s/k)^2);s/n,1) \\ M. F. Hasler, Dec 12 2007
a=2; L=[1,1,a]; n=15 for k in range(1,n-1): a=a*(a+k)//(k+1) L.append(a) print(L) # Robert FERREOL, Nov 07 2015
a[0]=1; a[n_]:=(1 + Sum[a[k]^3, {k,0,n-1}])/n; Array[a,7,0] (* Stefano Spezia, Oct 13 2024 *)
nxt[{n_,a_,t_}]:={n+1,(1+t)/(n+1),t+((1+t)/(n+1))^4}; NestList[nxt,{0,1,1},5][[All,2]] (* Harvey P. Dale, Nov 20 2018 *)
(k+1) * b_2(k+1) = b_2(k) * (b_2(k) + k) with b_2(0) = 1. b_2(1) == 2, b_2(2) == 3, b_2(3) == 5, ... , b_2(42) == 33 mod 43. So 43 * b_2(43) == b_2(42) * (b_2(42) + 42) == 24 (> 0) mod 43.
Comments