A288641 Define the sequence {b_n(k)} as the solutions of the recursion (k+1) * b_n(k+1) = b_n(k) * (b_n(k)^(n-1) + k) with b_n(0) = 1. a(n) is the least prime p where p * b_n(p) is not 0 mod p.
43, 89, 97, 251, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 179, 73, 19, 431, 193, 101, 53, 811, 47, 1427, 19, 251, 29, 311, 137, 71, 23, 499, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107
Offset: 2
Keywords
Examples
(k+1) * b_2(k+1) = b_2(k) * (b_2(k) + k) with b_2(0) = 1. b_2(1) == 2, b_2(2) == 3, b_2(3) == 5, ... , b_2(42) == 33 mod 43. So 43 * b_2(43) == b_2(42) * (b_2(42) + 42) == 24 (> 0) mod 43.
Links
- Seiichi Manyama, Table of n, a(n) for n = 2..1000
- Eric Weisstein's World of Mathematics, Goebel's Sequence
Comments