cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A115632 Decimal expansion of asymptotic constant in Goebel's sequence A003504.

Original entry on oeis.org

1, 0, 4, 7, 8, 3, 1, 4, 4, 7, 5, 7, 6, 4, 1, 1, 2, 2, 9, 5, 5, 9, 9, 0, 9, 4, 6, 2, 7, 4, 3, 1, 3, 7, 5, 5, 4, 5, 9, 0, 5, 8, 7, 6, 1, 2, 8, 6, 0, 2, 3, 3, 0, 9, 6, 9, 5, 1, 0, 4, 0, 6, 4, 8, 5, 3, 5, 3, 6, 0, 5, 9, 0, 4, 9, 7, 2, 6, 2, 3, 1, 7, 9, 7, 5, 1, 3, 0, 9, 7, 9, 0, 0, 0, 7, 0, 9, 9, 4, 7, 9, 5, 1, 1, 3
Offset: 1

Views

Author

Eric W. Weisstein, Jan 27 2006

Keywords

Examples

			1.04783144757641122955990946274313755459058761286023309695104064853536...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.10, p. 446.

Crossrefs

Cf. A003504.

Programs

  • PARI
    {a(n)=local(t=log(2)/2); for(k=2, 14, t+= (log(1+(k-1)/exp(2^(k-1)*t))-log(k))/2^k); t=exp(t-suminf(k=15, log(k)/2^k)); floor(t*10^(n-1))%10} /* Michael Somos, Apr 02 2006 */

A259878 Gobel's sequence A003504 read mod 43.

Original entry on oeis.org

1, 2, 3, 5, 10, 28, 25, 37, 10, 20, 15, 38, 19, 42, 36, 34, 2, 35, 39, 31, 13, 2, 6, 26, 28, 29, 4, 14, 42, 5, 20, 17, 4, 20, 16, 29, 42, 13, 42, 20, 8, 23, 33
Offset: 0

Views

Author

N. J. A. Sloane, Jul 10 2015

Keywords

Crossrefs

Programs

  • Maple
    t1:=[1,2]; a:=2;
    for n from 1 to 41 do
    b:=a*(a+n)/(n+1) mod 43;
    t1:=[op(t1),b]; a:=b; od:
    t1;

A116603 Coefficients in asymptotic expansion of sequence A052129.

Original entry on oeis.org

1, 2, -1, 4, -21, 138, -1091, 10088, -106918, 1279220, -17070418, 251560472, -4059954946, 71250808916, -1351381762990, 27552372478592, -601021307680207, 13969016314470386, -344653640328891233, 8997206549370634644, -247772400254700937149, 7178881153198162073002
Offset: 0

Views

Author

Michael Somos, Feb 18 2006

Keywords

Examples

			G.f. = 1 + 2*x - x^2 + 4*x^3 - 21*x^4 + 138*x^5 - 1091*x^6 + 10088*x^7 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -A[x] + 2/A[x/(1+x)]^(-1/2)*(1+x) + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 28 2011, updated Jan 12 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A=1; for( k=1, n, A = truncate( A + O(x^k)) + x * O(x^k); A = -A + 2 / subst(A^(-1/2), x, x/(1 + x)) * (1 + x);); polcoeff(A, n))};

Formula

a(0) = 1; thereafter, a(n) = (1/n)*Sum_{j=1..n} (-1)^(j-1)*2*b(j)*a(n-j), where b(j) = A000670(j) [Nemes]. - N. J. A. Sloane, Sep 11 2017
G.f. A(x) satisfies (1 + x)^2 = A(x)^2 / A(x/(1 + x)).
A003504(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where C = 1.04783144757... (see A115632).
A052129(n) ~ s^(2^n) / (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where s = 1.661687949633... (see A112302).
From Seiichi Manyama, May 26 2025: (Start)
G.f.: Product_{k>=1} (1 + k*x)^(1/2^k).
G.f.: exp(2 * Sum_{k>=1} (-1)^(k-1) * A000670(k) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A084785. (End)
a(n) ~ (-1)^(n+1) * (n-1)! / log(2)^(n+1). - Vaclav Kotesovec, May 27 2025

A108394 Least k for which f(k) = (1 + f(0)^n + f(1)^n + ... + f(k-1)^n)/k, f(0) = 1, is nonintegral.

Original entry on oeis.org

43, 89, 97, 214, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 94, 73, 19, 243, 141, 101, 53, 811, 47, 1077, 19, 251, 29, 311, 134, 71, 23, 86, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107, 19, 503
Offset: 2

Views

Author

William Rex Marshall, Jul 02 2005

Keywords

Comments

a(n) is known to be finite for n <= 10^14 (Kobayashi and Seki). - Stan Wagon, Dec 13 2024

References

  • Ian Stewart, Professor Stewart's Hoard of Mathematical Treasures, "Life, Recursion and Everything", Basic Books, NY, 2009, p. 239-240.

Crossrefs

First column of A097398.

Programs

  • Maple
    See link.
  • Mathematica
    primes = DeleteCases[Prime[Range[9, PrimePi[11000]]], 41];
    yModPrime[p_, k_] := (i = 1; Nest[(i++;
          Mod[# + PowerMod[(# ModularInverse[i - 1, p]), k, p], p]) &, 2, p - 1]);
    cGen[k_ /; MemberQ[{6, 14}, Mod[k, 18]], _] := 19;
    cGen[k_, M_] := Module[{x = 2, L = M!, n},
       Do[x = Mod[(n - 1) x + PowerMod[x, k, L], L]; L /= n;
        If[Divisible[x, n], x /= n, Return[n, Module]], {n, 2, M}]; ∞];
    cBound[k_, start_ : Automatic] := If[MemberQ[{6, 14}, Mod[k, 18]], 19,
      SelectFirst[If[IntegerQ[start], Select[primes, # ≥ start &], primes],
       yModPrime[#, k] != 0 &]];
    c[k_, start_ : Automatic] := cGen[k, cBound[k, start]];
    c /@ Range[2, 10] (* Marshall Buck, Mark Motley, and Stan Wagon, Dec 13 2024 *)

Formula

Matsuhira, Matsusaka, & Tsuchida prove that a(n) >= 19 and a(n) ≠ 41. - Charles R Greathouse IV, Nov 17 2023

A005166 a(0) = 1; a(n) = (1 + a(0)^3 + ... + a(n-1)^3)/n (not always integral!).

Original entry on oeis.org

1, 2, 5, 45, 22815, 2375152056927, 2233176271342403475345148513527359103
Offset: 0

Views

Author

Keywords

Comments

Terms are integers until n=A097398(2,2)=89.
Guy states that by computing the sequence modulo 89 it is easy to show that a(89) is not integral. - T. D. Noe, Sep 17 2007

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_]:=(1 + Sum[a[k]^3, {k,0,n-1}])/n; Array[a,7,0] (* Stefano Spezia, Oct 13 2024 *)

A005167 a(n+1) = (1 + a(0)^4 + ... + a(n)^4 )/(n+1) (not always integral!).

Original entry on oeis.org

1, 2, 9, 2193, 5782218987645, 223567225753623833253893162919867828939456664850241
Offset: 0

Views

Author

Keywords

Comments

Terms are integer until n=A097398(3,2)=97.
Guy states that by computing the sequence modulo 97 it is easy to show that a(97) is not integral. - T. D. Noe, Sep 17 2007
The next term -- a(6) -- has 201 digits. - Harvey P. Dale, Nov 20 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_,t_}]:={n+1,(1+t)/(n+1),t+((1+t)/(n+1))^4}; NestList[nxt,{0,1,1},5][[All,2]] (* Harvey P. Dale, Nov 20 2018 *)

A097398 Matrix T(m,x(1)), m>=1, x(1)>=2, read by antidiagonals, where T(m,x(1)) gives the position of the first noninteger term in the sequence defined by x(n)=(x(n-1)*(x(n-1)^m+n-1))/n for n>=2 with exponent m and the given starting value x(1).

Original entry on oeis.org

43, 7, 89, 17, 89, 97, 34, 89, 17, 214, 17, 89, 23, 43, 19, 17, 31, 97, 139, 83, 239, 51, 151, 149, 107, 13, 191, 37, 17, 79, 13, 269, 19, 359, 7, 79, 7, 89, 13, 107, 13, 419, 23, 127, 83, 34, 79, 83, 214, 37, 127, 37, 158, 31, 239
Offset: 1

Views

Author

Hugo Pfoertner, Aug 15 2004

Keywords

Comments

The rectangular table (Table 1, page 35) in Ibstedt's book gives the position of the first noninteger term for parameters x1 and m:
m\x1: 2 3 4 5 6 7 8 9 10 11
1 43 7 17 34 17 17 51 17 7 34
2 89 89 89 89 31 151 79 89 79 601
3 97 17 23 97 149 13 13 83 23 13
4 214 43 139 107 269 107 214 139 251 107
5 19 83 13 19 13 37 13 37 347 19
6 239 191 359 419 127 127 239 191 239 461
7 37 7 23 37 23 37 17 23 7 37
8 79 127 158 79 103 103 163 103 163 79
9 83 31 41 83 71 83 71 23 41 31
10 239 389 169 137 239 239 239 239 239 389

Examples

			T(1,3)=a(2)=7: x(1)=3, x(2)=x(1)*(x(1)^1+2-1)/n=3*(3+2-1)/2=6, x(3)=6*(6+3-1)/3=16, x(4)=16*(16+4-1)/4=76, x(5)=76*(76+5-1)/5=1216, x(6)=1216*(1216+6-1)/6=247456, x(7)=247456*(247456+7-1)/7=8747993810+2/7; i.e., x(7) is the first noninteger term in the sequence x(n) = x(n-1)*(x(n-1)^1+n-1)/n, n>=2, x(1)=3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E15.
  • Henry Ibstedt, Mainly natural numbers - a few elementary studies on Smarandache sequences and other number problems, Henry Ibstedt. - Martinsville, Ind.: Bookman, 2003. Chapter IV, Some Sequences of Large Integers, pp. 32-37.

Crossrefs

Cf. A003504 for more references and links, A005166, A005167.

Extensions

m=10 row corrected by Don Reble, Dec 07 2004, who remarks that the versions in the books of Ibstedt and Guy are both wrong

A061315 Array read by antidiagonals: T(n,k)=T(n,k-1)*(T(n,k-1)+k-1)/k with T(n,1)=n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 5, 6, 4, 1, 10, 16, 10, 5, 1, 28, 76, 40, 15, 6, 1, 154, 1216, 430, 85, 21, 7, 1, 3520, 247456, 37324, 1870, 161, 28, 8, 1, 1551880
Offset: 1

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Comments

Not always an integer

Examples

			1,1,1,1,1,1,1,1,1,1,...
2,3,5,10,28,154,3520,1551880,267593772160,7160642690122633501504,...
3,6,16,76,1216,247456,61235956672/7,468730299066952899064/49,...
4,10,40,430,37324,232211266,7703153350084336,7417321441864447837991470393906,
5,15,85,1870,700876,81871778626,957569733696568731376,...
6,21,161,6601,8719921,12672844307641,22942997549397847673832961,...
7,28,280,19810,78503068,1027122012987994,...
		

Crossrefs

Rows include A000012 and A003504. Columns include A000027, A000217, A006007, A061319 and A061321.

Formula

a(n) =A061314(n, k-1)/k

A288641 Define the sequence {b_n(k)} as the solutions of the recursion (k+1) * b_n(k+1) = b_n(k) * (b_n(k)^(n-1) + k) with b_n(0) = 1. a(n) is the least prime p where p * b_n(p) is not 0 mod p.

Original entry on oeis.org

43, 89, 97, 251, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 179, 73, 19, 431, 193, 101, 53, 811, 47, 1427, 19, 251, 29, 311, 137, 71, 23, 499, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107
Offset: 2

Views

Author

Seiichi Manyama, Jun 13 2017

Keywords

Comments

If A108394(n) is a prime, a(n) = A108394(n).

Examples

			(k+1) * b_2(k+1) = b_2(k) * (b_2(k) + k) with b_2(0) = 1.
b_2(1) == 2, b_2(2) == 3, b_2(3) == 5, ... , b_2(42) == 33 mod 43.
So 43 * b_2(43) == b_2(42) * (b_2(42) + 42) == 24 (> 0) mod 43.
		

Crossrefs

Cf. A003504 ({b_2(n+1)}), A005166 ({b_3(n)}), A005167 ({b_4(n)}), A108394, A288676.

A061322 a(n) = a(n-1) * (1 + a(n-1)/n^2) with a(0) = 2.

Original entry on oeis.org

2, 6, 15, 40, 140, 924, 24640, 12415040, 2408343949440, 71606426901226335015040, 51274803735606705472274088614112357905277056, 21728144612603201307908899563300049012978385050783094682272184269369267136230071558272
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Comments

Only first 42 terms are integers (see A003504).

Examples

			a(2) = 6 * (1 + 6/2^2) = 15.
		

Programs

  • Mathematica
    Block[{n = 0}, NestList[#*(1 + #/++n^2) &, 2, 11]] (* Paolo Xausa, Apr 17 2024 *)
  • PARI
    {a(n) = local(x); if( n<1, 2 * (n==0), (x = a(n-1)) + (x/n)^2)} /* Michael Somos, Apr 02 2006 */

Formula

a(n) = a(n-1) + A003504(n+1)^2, a(n-1) = n * A003504(n+1). a(n) = A061314(2, n).
Showing 1-10 of 12 results. Next