A003504 a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).
1, 1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, 7160642690122633501504, 4661345794146064133843098964919305264116096, 1810678717716933442325741630275004084414865420898591223522682022447438928019172629856
Offset: 0
Examples
a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Sect. E15.
- Clifford Pickover, A Passion for Mathematics, 2005.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..16
- Hibiki Gima, Toshiki Matsusaka, Taichi Miyazaki, and Shunta Yara, On integrality and asymptotic behavior of the (k,l)-Göbel sequences, arXiv:2402.09064 [math.NT], 2024. See p. 1.
- R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- H. Ibstedt, Some sequences of large integers, Fibonacci Quart. 28 (1990), 200-203.
- Yuh Kobayashi and Shin-ichiro Seki, On the length over which k-Göbel sequences remain integers, arXiv:2502.17448 [math.CO], 2025.
- H. W. Lenstra, Jr., R. K. Guy, and N. J. A. Sloane, Correspondence, 1975-1978
- N. Lygeros and M. Mizony, Study of primality of terms of a_k(n)=(1+(sum from 1 to n-1)(a_k(i)^k))/(n-1)
- Rinnosuke Matsuhira, Toshiki Matsusaka, and Koki Tsuchida, How long can k-Göbel sequences remain integers?, arXiv:2307.09741 [math.NT], 2023.
- D. Rusin, Law of small numbers [Broken link]
- D. Rusin, Law of small numbers [Cached copy]
- Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
- Eric Weisstein's World of Mathematics, Göbel's Sequence
- D. Zagier, Problems posed at the St Andrews Colloquium, 1996
- D. Zagier, Solution: Day 5, problem 3
Programs
-
Maple
a:=2: L:=1,1,a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L,a od:L; # Robert FERREOL, Nov 07 2015
-
Mathematica
a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *) With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *)
-
PARI
A003504(n,s=2)=if(n-->0,for(k=1,n-1,s+=(s/k)^2);s/n,1) \\ M. F. Hasler, Dec 12 2007
-
Python
a=2; L=[1,1,a]; n=15 for k in range(1,n-1): a=a*(a+k)//(k+1) L.append(a) print(L) # Robert FERREOL, Nov 07 2015
Formula
a(n+1) = ((n-1) * a(n) + a(n)^2) / n if n > 1. - Michael Somos, Apr 02 2006
0 = a(n)*(+a(n)*(a(n+1) - a(n+2)) - a(n+1) - a(n+1)^2) +a(n+1)*(a(n+1)^2 - a(n+2)) if n>1. - Michael Somos, Jul 25 2016
Extensions
a(0)..a(43) are integral, but from a(44) onwards every term is nonintegral - H. W. Lenstra, Jr.
Corrected and extended by M. F. Hasler, Dec 12 2007
Further corrections from Max Alekseyev, Mar 04 2009
Comments