cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003504 a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, 7160642690122633501504, 4661345794146064133843098964919305264116096, 1810678717716933442325741630275004084414865420898591223522682022447438928019172629856
Offset: 0

Views

Author

Keywords

Comments

The sequence appears with a different offset in some other sources. - Michael Somos, Apr 02 2006
Also known as Göbel's (or Goebel's) Sequence. Asymptotically, a(n) ~ n*C^(2^n) where C=1.0478... (A115632). A more precise asymptotic formula is given in A116603. - M. F. Hasler, Dec 12 2007
Let s(n) = (n-1)*a(n). By considering the p-adic representation of s(n) for primes p=2,3,...,43, one finds that a(44) is the first nonintegral value in this sequence. Furthermore, for n>44, the valuation of s(n) w.r.t. 43 is -2^(n-44), implying that both s(n) and a(n) are nonintegral. - M. F. Hasler and Max Alekseyev, Mar 03 2009
a(44) is approximately 5.4093*10^178485291567. - Hans Havermann, Nov 14 2017.
The fractional part is simply 24/43 (see page 709 of Guy (1988)).
The more precise asymptotic formula is a(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...). - Michael Somos, Mar 17 2012

Examples

			a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Sect. E15.
  • Clifford Pickover, A Passion for Mathematics, 2005.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005166, A005167, A097398, A108394, A115632, A116603 (asymptotic formula).

Programs

  • Maple
    a:=2: L:=1,1,a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L,a od:L; # Robert FERREOL, Nov 07 2015
  • Mathematica
    a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *)
    With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *)
  • PARI
    A003504(n,s=2)=if(n-->0,for(k=1,n-1,s+=(s/k)^2);s/n,1) \\ M. F. Hasler, Dec 12 2007
    
  • Python
    a=2; L=[1,1,a]; n=15
    for k in range(1,n-1):
        a=a*(a+k)//(k+1)
        L.append(a)
    print(L) # Robert FERREOL, Nov 07 2015

Formula

a(n+1) = ((n-1) * a(n) + a(n)^2) / n if n > 1. - Michael Somos, Apr 02 2006
0 = a(n)*(+a(n)*(a(n+1) - a(n+2)) - a(n+1) - a(n+1)^2) +a(n+1)*(a(n+1)^2 - a(n+2)) if n>1. - Michael Somos, Jul 25 2016

Extensions

a(0)..a(43) are integral, but from a(44) onwards every term is nonintegral - H. W. Lenstra, Jr.
Corrected and extended by M. F. Hasler, Dec 12 2007
Further corrections from Max Alekseyev, Mar 04 2009

A108394 Least k for which f(k) = (1 + f(0)^n + f(1)^n + ... + f(k-1)^n)/k, f(0) = 1, is nonintegral.

Original entry on oeis.org

43, 89, 97, 214, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 94, 73, 19, 243, 141, 101, 53, 811, 47, 1077, 19, 251, 29, 311, 134, 71, 23, 86, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107, 19, 503
Offset: 2

Views

Author

William Rex Marshall, Jul 02 2005

Keywords

Comments

a(n) is known to be finite for n <= 10^14 (Kobayashi and Seki). - Stan Wagon, Dec 13 2024

References

  • Ian Stewart, Professor Stewart's Hoard of Mathematical Treasures, "Life, Recursion and Everything", Basic Books, NY, 2009, p. 239-240.

Crossrefs

First column of A097398.

Programs

  • Maple
    See link.
  • Mathematica
    primes = DeleteCases[Prime[Range[9, PrimePi[11000]]], 41];
    yModPrime[p_, k_] := (i = 1; Nest[(i++;
          Mod[# + PowerMod[(# ModularInverse[i - 1, p]), k, p], p]) &, 2, p - 1]);
    cGen[k_ /; MemberQ[{6, 14}, Mod[k, 18]], _] := 19;
    cGen[k_, M_] := Module[{x = 2, L = M!, n},
       Do[x = Mod[(n - 1) x + PowerMod[x, k, L], L]; L /= n;
        If[Divisible[x, n], x /= n, Return[n, Module]], {n, 2, M}]; ∞];
    cBound[k_, start_ : Automatic] := If[MemberQ[{6, 14}, Mod[k, 18]], 19,
      SelectFirst[If[IntegerQ[start], Select[primes, # ≥ start &], primes],
       yModPrime[#, k] != 0 &]];
    c[k_, start_ : Automatic] := cGen[k, cBound[k, start]];
    c /@ Range[2, 10] (* Marshall Buck, Mark Motley, and Stan Wagon, Dec 13 2024 *)

Formula

Matsuhira, Matsusaka, & Tsuchida prove that a(n) >= 19 and a(n) ≠ 41. - Charles R Greathouse IV, Nov 17 2023

A005166 a(0) = 1; a(n) = (1 + a(0)^3 + ... + a(n-1)^3)/n (not always integral!).

Original entry on oeis.org

1, 2, 5, 45, 22815, 2375152056927, 2233176271342403475345148513527359103
Offset: 0

Views

Author

Keywords

Comments

Terms are integers until n=A097398(2,2)=89.
Guy states that by computing the sequence modulo 89 it is easy to show that a(89) is not integral. - T. D. Noe, Sep 17 2007

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_]:=(1 + Sum[a[k]^3, {k,0,n-1}])/n; Array[a,7,0] (* Stefano Spezia, Oct 13 2024 *)

A005167 a(n+1) = (1 + a(0)^4 + ... + a(n)^4 )/(n+1) (not always integral!).

Original entry on oeis.org

1, 2, 9, 2193, 5782218987645, 223567225753623833253893162919867828939456664850241
Offset: 0

Views

Author

Keywords

Comments

Terms are integer until n=A097398(3,2)=97.
Guy states that by computing the sequence modulo 97 it is easy to show that a(97) is not integral. - T. D. Noe, Sep 17 2007
The next term -- a(6) -- has 201 digits. - Harvey P. Dale, Nov 20 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_,t_}]:={n+1,(1+t)/(n+1),t+((1+t)/(n+1))^4}; NestList[nxt,{0,1,1},5][[All,2]] (* Harvey P. Dale, Nov 20 2018 *)

A095397 Modified juggler map: see A095396. Largest value in trajectory of started n under the juggler map of A095396.

Original entry on oeis.org

1, 2, 36, 4, 36, 36, 36, 8, 140, 10, 36, 36, 46, 36, 58, 36, 70, 36, 82, 36, 96, 36, 110, 24, 52214, 26, 140, 140, 156, 140, 172, 32, 2598, 34, 2978, 36, 86818724, 38, 233046, 40, 262, 42, 4710, 44, 5222, 46, 322, 48, 6352, 50, 364, 52, 7554, 54, 8210, 56, 430, 58
Offset: 1

Views

Author

Labos Elemer, Jun 18 2004

Keywords

Comments

Parallel to A094716.

Examples

			n=37: the trajectory is {37, 225, 3375, 196069, 86818724, 196068, 3374, 224, 36, 10, 4, 2, 1}, the peak is a[37]=86818724
		

Crossrefs

Programs

  • Mathematica
    d[x_]:=d[x]=(1-Mod[x, 2])*Floor[N[x^(2/3), 50]] +Mod[x, 2]*Floor[N[x^(3/2), 50]];d[1]=1; fd[x_]:=Delete[FixedPointList[d, x], -1] Table[Max[fd[w]], {w, 1, m}]

A292996 Index of first nonintegral term in the sequence b(1)=2, b(k)=b(k-1)*(b(k-1)+k-1+n)/k (k>=2).

Original entry on oeis.org

43, 3, 7, 5, 3, 7, 59, 3, 5, 7, 3, 23, 7, 3, 19, 17, 3, 73, 5, 3, 19, 13, 3, 5, 17, 3, 7, 17, 3, 59, 7, 3, 17, 5, 3, 43, 17, 3, 5, 19, 3, 17, 29, 3, 7, 11, 3, 7, 5, 3, 31, 7, 3, 5, 7, 3, 11, 23, 3, 83, 13, 3, 41, 5, 3, 7, 17, 3, 5, 47, 3, 19, 7, 3, 23, 7, 3, 19, 5, 3, 23, 31, 3, 5, 43, 3, 7, 17, 3, 7, 19, 3, 17, 5, 3, 17, 7, 3, 5, 13, 3, 93
Offset: 0

Views

Author

Max Alekseyev, Sep 27 2017

Keywords

Comments

a(0)=A097398(1,2)=43 corresponds to Goebel's sequence A003504.
First composite term is a(101)=93.

Crossrefs

Showing 1-6 of 6 results.