cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108410 Triangle T(n,k) read by rows: number of 12312-avoiding matchings on [2n] with exactly k crossings (n >= 1, 0 <= k <= n-1).

Original entry on oeis.org

1, 2, 1, 5, 5, 2, 14, 21, 15, 5, 42, 84, 84, 49, 14, 132, 330, 420, 336, 168, 42, 429, 1287, 1980, 1980, 1350, 594, 132, 1430, 5005, 9009, 10725, 9075, 5445, 2145, 429, 4862, 19448, 40040, 55055, 55055, 40898, 22022, 7865, 1430, 16796, 75582
Offset: 1

Views

Author

Ralf Stephan, Jun 03 2005

Keywords

Examples

			Triangle begins
     1;
     2,     1;
     5,     5,     2;
    14,    21,    15,     5;
    42,    84,    84,    49,    14;
   132,   330,   420,   336,   168,    42;
   429,  1287,  1980,  1980,  1350,   594,   132;
  1430,  5005,  9009, 10725,  9075,  5445,  2145,  429;
  4862, 19448, 40040, 55055, 55055, 40898, 22022, 7865, 1430;
		

Crossrefs

Left-hand columns include A000108 and A002054. Right-hand columns include A000108 and A007851+1. Row sums are A001764. A089434.

Programs

  • Maple
    T:=(n,k)->binomial(n-1+k,n-1)*binomial(2*n-k,n+1)/n: for n from 1 to 10 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form - Emeric Deutsch, Dec 19 2006
  • Mathematica
    T[n_, k_] := Binomial[n + k - 1, n - 1]*Binomial[2*n - k, n + 1]/n;
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 11 2017, after Emeric Deutsch *)
  • PARI
    T(n,k) = binomial(n-1+k, n-1)*binomial(2*n-k, n+1)/n; \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = Sum_{i=n..2*n-1} (-1)^(n+k+i)/i*C(i, n)*C(3*n, i+1+n)*C(i-n, k).
T(n,k) = C(n-1+k,n-1)*C(2*n-k,n+1)/n, (0 <= k <= n-1). [Chen et al.] - Emeric Deutsch, Dec 19 2006
O.g.f. equals the series reversion with respect to x of x*(1 + x*(1 - t))/(1 + x)^3. If R(n,t) is the n-th row polynomial of this triangle then R(n, 1+t) is the n-th row polynomial of A089434. - Peter Bala, Jul 15 2012