cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108427 Number of peaks of the form Ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1).

Original entry on oeis.org

1, 9, 85, 833, 8361, 85305, 880685, 9173505, 96220561, 1014889769, 10753517061, 114375683009, 1220435354425, 13058529727833, 140059477112925, 1505357362548737, 16209464357137953, 174827809500822345, 1888383038494338485, 20424130116241366593, 221164921352046545609, 2397512484385887298681
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Examples

			a(2)=9 because we have ud(Ud)d, u(Ud)dd, (Ud)dud, (Ud)d(Ud)d, (Ud)udd, (Ud)(Ud)dd, U(Ud)ddd (the peaks of the form Ud shown between parentheses).
G.f. = x + 9*x^2 + 85*x^3 + 833*x^4 + 8361*x^5 + 85305*x^6 + 880685*x^7 + ... - _Michael Somos_, Jul 01 2018
		

Crossrefs

Programs

  • Maple
    seq(add(k*binomial(n,k)*binomial(3*n-k,n-1)/n,k=0..n),n=1..22);
    a := n -> binomial(3*n-1,n-1)*hypergeom([1-n,-2*n], [1-3* n], -1); seq(round(evalf(a(n),32)), n=1..22); # Peter Luschny, Oct 06 2015
  • Mathematica
    Table[1/n*Sum[k*Binomial[n, k]*Binomial[3n - k, n-1], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
    a[n_] :=  HypergeometricPFQ[{-n, n, -n + 1}, {1/2, 1}, 1];
    Table[a[n], {n, 1, 22}] (* Peter Luschny, Mar 14 2018 *)
    a[ n_] := JacobiP[n - 1, n + 1, 0, 3]; (* Michael Somos, Jul 01 2018 *)
  • Maxima
    G(z):=z*((2/3)*sqrt((z+3)/z)*sin((1/3)*asin(sqrt(z)*(z+18) / (z+3)^(3/2)))+2/3);
    taylor(diff(G(z),z,1)/G(z)-1/z,z,0,20); /* Vladimir Kruchinin, Oct 06 2015 */
  • PARI
    a(n) = (1/n)*sum(k=0,n,k*binomial(n, k)*binomial(3*n-k, n-1)); \\ Joerg Arndt, May 15 2013
    

Formula

a(n) = (1/n)*Sum_{k=0..n} k*binomial(n, k)*binomial(3n-k, n-1).
Recurrence: 9*n*(2*n-3)*a(n) = (202*n^2 - 414*n + 185)*a(n-1) - (26*n^2 - 175*n + 255)*a(n-2) - 2*(n-3)*(2*n-5)*a(n-3), for n>3. - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(30*sqrt(5)-50)*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012. Equivalently, a(n) ~ phi^(5*n - 1) / (2* 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
G.f.: A(x) = 1/2*(x*B'(x)/B(x)-1), where B(x) satisfies B(x) = x*((1-2*B(x))/(2*(1-4*B(x))) + 1/(2*sqrt(1-4*B(x)))). - Vladimir Kruchinin, Oct 06 2015
a(n) = binomial(3*n-1, n-1)*hypergeom([1-n, -2*n], [1-3*n], -1). - Peter Luschny, Oct 06 2015
a(n) = hypergeom([-n, n, -n + 1], [1/2, 1], 1). - Peter Luschny, Mar 14 2018
a(n) = P(n-1, n+1, 0, 3), where P is the Jacobi Polynomial. - Richard Turk, Jun 25 2018