cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108432 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no hills (a hill is either a ud or a Udd starting at the x-axis).

Original entry on oeis.org

1, 0, 6, 34, 274, 2266, 19738, 177642, 1640050, 15445690, 147813706, 1433309194, 14052298690, 139063589370, 1387288675002, 13936344557354, 140859338668306, 1431424362057018, 14616361066692778, 149892742974500042, 1543146417012350050, 15942622531081651578
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Column 0 of A108431.
The radius of convergence of g.f. y(x) is r = (5*sqrt(5)-11)/2, with y(r) = (11*sqrt(5)+23)/38. - Vaclav Kotesovec, Mar 17 2014

Examples

			a(2)=6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
		

Crossrefs

Programs

  • Maple
    g:=1/(1+2*z-z*A-z*A^2): A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3:gser:=series(g,z=0,27): 1,seq(coeff(gser,z^n),n=1..24);
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, `if`(t and y=1, 0, b(x-1, y-1, t))+
          b(x-1, y+2, is(y=0))+b(x-2, y+1, is(y=0))))
        end:
    a:= n-> b(3*n, 0, false):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    CoefficientList[Series[9/(3 + 18*x + 2*(3+x)*Cos[2/3*ArcSin[Sqrt[x]*(18+x)/(3+x)^(3/2)]] - 2*x*Sqrt[(3+x)/x]*Sin[1/3*ArcSin[Sqrt[x]*(18+x)/(3+x)^(3/2)]]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 17 2014 *)
  • PARI
    {a(n)=local(y=1); for(i=1, n, y=-(-1 + 6*x*y - 5*x*y^2 - 12*x^2*y^2 - x*y^3 + 6*x^2*y^3 + 8*x^3*y^3) + (O(x^n))^3); polcoeff(y, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014

Formula

G.f.: 1/(1+2z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
G.f. y(x) satisfies: -1 + y + 6*x*y - 5*x*y^2 - 12*x^2*y^2 - x*y^3 + 6*x^2*y^3 + 8*x^3*y^3 = 0. - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (11+5*sqrt(5))^n * sqrt(273965 + 122523*sqrt(5)) / (361 * sqrt(5*Pi) * n^(3/2) * 2^(n+3/2)). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence 4*n*(2*n+1)*a(n) +3*(-70*n^2+83*n-34)*a(n-1) +11*(154*n^2-436*n+327)*a(n-2) +3*(-1042*n^2+4875*n-4627)*a(n-3) +2*(-4016*n^2+18260*n-21399)*a(n-4) +12*(-206*n^2+1383*n-2322)*a(n-5) -80*(n-4)*(2*n-9)*a(n-6)=0. - R. J. Mathar, Jul 26 2022