cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108443 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have k triple descents (i.e., ddd's).

Original entry on oeis.org

1, 2, 6, 3, 1, 21, 24, 15, 5, 1, 80, 150, 145, 84, 31, 7, 1, 322, 857, 1145, 949, 528, 202, 53, 9, 1, 1347, 4692, 8096, 8801, 6598, 3551, 1394, 398, 81, 11, 1, 5798, 25102, 53457, 72338, 68594, 47805, 25092, 10019, 3040, 692, 115, 13, 1, 25512, 132484, 337132
Offset: 0

Views

Author

Emeric Deutsch and Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n has 2n-1 terms (n >= 1). Row sums yield A027307. Column 0 yields A106228.

Examples

			T(2,1) = 3 because we have uUddd, Uuddd and UdUddd.
Triangle begins:
    1;
    2;
    6,    3,    1;
   21,   24,   15,    5,    1;
   80,  150,  145,   84,   31,    7,    1;
  322,  857, 1145,  949,  528,  202,   53,    9,    1;
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y-1, min(2, t+1))*`if`(t=2, z, 1)+
           b(x-1, y+2, 0)+b(x-2, y+1, 0))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(3*n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0 || y > x, 0, If[x == 0, 1, b[x - 1, y - 1, Min[2, t + 1]]*If[t == 2, z, 1] + b[x - 1, y + 2, 0] + b[x - 2, y + 1, 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[3*n, 0, 0]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
  • PARI
    {T(n,k)=local(G=1+z*O(z^n)+t*O(t^k));for(k=1,n, G=1+z*(t+z-t*z)^2*G^3+z*(2-t)*(t+z-t*z)*G^2+2*z*(1-t)*G); polcoeff(polcoeff(G,n,z),k,t)}

Formula

G.f. G = G(t,z) satisfies G = 1 + z(t + z - tz)^2*G^3 + z(2-t)(t + z - tz)G^2 + 2z(1-t)G.