cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108450 Number of pyramids in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).

Original entry on oeis.org

2, 10, 58, 402, 3122, 26010, 227050, 2049186, 18964194, 178976426, 1715905050, 16665027378, 163611970066, 1621103006010, 16189480081354, 162791835045698, 1646810150270914, 16748008972020554, 171135004105459194
Offset: 1

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

A108450(n)=sum(k*A108445(k),k=1..n) (for example, A108450(3)=1*18+2*8+3*8=58). A108450(n)=2*A108453(n). A108450 =2*partial sums of A032349.

Examples

			a(2)=10 because in the A027307(2)=10 paths we have altogether 10 pyramids (shown between parentheses): (ud)(ud), (ud)(Udd), (uudd), uUddd, (Udd)(ud), (Udd)(Udd), Ududd, UdUddd, Uuddd, (UUdddd).
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=2*z*A^2/(1-z): gser:=series(g,z=0,25): seq(coeff(gser,z^n),n=1..22);
  • Mathematica
    Table[2 Sum[Sum[Binomial[2 k + 2, k - i] Binomial[2 k + i + 1, 2 k + 1], {i, 0, k}]/(k + 1), {k, 0, n - 1}], {n, 19}] (* Michael De Vlieger, Feb 29 2016 *)
  • Maxima
    a(n):=2*sum(sum(binomial(2*k+2,k-i)*binomial(2*k+i+1,2*k+1),i,0,k)/(k+1),k,0,n-1);
    /* Vladimir Kruchinin, Feb 29 2016 */
  • PARI
    {a(n)=local(y=2*x); for(i=1, n, y=(2*x*(2+y-x*y)^2)/((1-x)*(2-y+x*y)^2) + (O(x^n))^3); polcoeff(y, n)}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014
    

Formula

G.f.: 2*z*A^2/(1-z), where A=1+z*A^2+z*A^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
G.f. y(x) satisfies: y = (2*x*(2+y-x*y)^2)/((1-x)*(2-y+x*y)^2). - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (3*sqrt(5)-1) * ((11+5*sqrt(5))/2)^n /(11*5^(1/4)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
a(n) = 2*Sum_{k=0..n-1}(Sum_{i=0..k}(binomial(2*k+2,k-i)* binomial(2*k+i+1,2*k+1))/(k+1)). - Vladimir Kruchinin, Feb 29 2016
D-finite with recurrence n*(2*n-1)*a(n) +6*-(n-1)*(5*n-6)*a(n-1) +4*(23*n^2-97*n+111)*a(n-2) +2*(-29*n^2+142*n-174)*a(n-3) -3*(2*n-5)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022