cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051707 Number of factorizations of (n,n) into pairs (j,k).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 8, 3, 5, 1, 23, 1, 5, 5, 23, 1, 23, 1, 23, 5, 5, 1, 91, 3, 5, 8, 23, 1, 52, 1, 60, 5, 5, 5, 143, 1, 5, 5, 91, 1, 52, 1, 23, 23, 5, 1, 328, 3, 23, 5, 23, 1, 91, 5, 91, 5, 5, 1, 339, 1, 5, 23, 161, 5, 52, 1, 23, 5, 52, 1, 686, 1, 5, 23, 23, 5, 52, 1, 328, 23, 5, 1, 339, 5
Offset: 1

Views

Author

Keywords

Comments

Pairs (j,k) must satisfy j>1, k>=1; (a,b)*(x,y)=(a*x,b*y); unit is (1,1).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).

Examples

			(6,6)=(2,1)*(3,6)=(2,6)*(3,1)=(2,2)*(3,3)=(2,3)*(3,2), so a(6)=5.
		

Crossrefs

Cf. A050354, A108461, A108455, A348161 (into at most two pairs).
a(p^k) = A108457(k).
Main diagonal of A108455.

Extensions

Edited by Christian G. Bower, Jun 03 2005

A091438 Triangle a(n,k) of partitions of n objects of 2 colors, k of which are black and each part with at least one black object.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 6, 7, 7, 1, 4, 8, 12, 12, 11, 1, 4, 10, 16, 21, 19, 15, 1, 5, 12, 23, 31, 36, 30, 22, 1, 5, 15, 28, 45, 55, 58, 45, 30, 1, 6, 17, 37, 60, 84, 94, 92, 67, 42, 1, 6, 20, 44, 80, 115, 147, 153, 140, 97, 56, 1, 7, 23, 55, 101, 161, 211, 249, 244, 211, 139, 77
Offset: 1

Views

Author

Keywords

Comments

Number of ways to factor p^(n-k)*q^k where p and q are distinct primes and each factor is a multiple of q.

Examples

			  1;
  1, 2;
  1, 2, 3;
  1, 3, 4, 5;
  1, 3, 6, 7, 7; ...
		

Crossrefs

Row sums: A000219.
Main diagonal: A000041.
a(2n,n) gives A108457.
Cf. A054225.

Programs

  • Maple
    b:= proc(n, i, j, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
          `if`(i<1 or k<1, 0, `if`(j<1, b(n, i-1, i-1, k),
           b(n, i, j-1, k)+`if`(i>n or j>k, 0, b(n-i, i, j, k-j)))))
        end:
    a:= (n, k)->  b(n$2, k$2):
    seq(seq(a(n,k), k=1..n), n=1..15);  # Alois P. Heinz, Mar 14 2015
  • Mathematica
    b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, If[k == 0, 1, 0], If[i < 1 || k < 1, 0, If[j < 1, b[n, i - 1, i - 1, k], b[n, i, j - 1, k] + If[i > n || j > k, 0, b[n - i, i, j, k - j]]]]]; a[n_, k_] :=  b[n, n, k, k]; Table[a[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz *)

Formula

G.f.: A(x,y) = Product_{i>=1, j=1..i} (1/(1-x^i*y^j)).

A108456 Table read by antidiagonals: T(n,k) = number of partitions of (n,k) into pairs (i,j) with i>0, j>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 3, 4, 5, 0, 1, 3, 6, 7, 7, 0, 1, 4, 8, 12, 12, 11, 0, 1, 4, 10, 16, 21, 19, 15, 0, 1, 5, 12, 23, 31, 36, 30, 22, 0, 1, 5, 15, 28, 45, 55, 58, 45, 30, 0, 1, 6, 17, 37, 60, 84, 94, 92, 67, 42, 0, 1, 6, 20, 44, 80, 115, 147, 153, 140, 97, 56, 0, 1, 7, 23
Offset: 0

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

(a,b)+(x,y)=(a+x,b+y); unit is (0,0).

Examples

			1 0 0 0 0 ...
1 1 1 1 1 ...
2 2 3 3 4 ...
3 4 6 8 10 ...
5 7 12 16 23 ...
(3,2)=(2,2)+(1,0)=(2,1)+(1,1)=(2,0)+(1,2)=(1,2)+(1,0)+(1,0)=(1,1)+(1,1)+(1,0), so a(3,2)=6.
		

Crossrefs

Cf. A108461, A108455. Columns 0-1: A000041, A000070. Main diagonal: A108457.

Formula

Euler transform of table whose g.f. is x/((1-x)*(1-y)).
Showing 1-3 of 3 results.