A108470 Table read by antidiagonals: T(n,k) = number of labeled partitions of (n,k) into pairs (i,j).
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 15, 1, 1, 31, 79, 79, 31, 1, 1, 63, 241, 339, 241, 63, 1, 1, 127, 727, 1351, 1351, 727, 127, 1, 1, 255, 2185, 5235, 6721, 5235, 2185, 255, 1, 1, 511, 6559, 20119, 31831, 31831, 20119, 6559, 511, 1, 1, 1023, 19681, 77379
Offset: 1
Examples
1 1 1 1 1 ... 1 3 7 15 31 ... 1 7 25 79 241 ... 1 15 79 339 1351 ... 1 31 241 1351 6721 ...
Programs
-
Maxima
T(n,k):=sum(m!*stirling2(k,m)*stirling2(n-k+1,m),m,1,min(k,n-k+1)); /* Vladimir Kruchinin, Apr 11 2015 */
-
PARI
antidiag(nn) = {for (n=1, nn, for (k=1, n, print1(sum(m=1, min(k, n-k+1), m!*stirling(k, m, 2)*stirling(n-k+1, m, 2)), ", "); ); print(););} \\ Michel Marcus, Apr 11 2015
-
PARI
tabl(nn) = {default(seriesprecision, nn); for (n=1, nn, for (k=1, nn, print1(k!*polcoeff(polcoeff(n!*exp((exp(x)-1)*(exp(y)-1))+O(x^(n+1)), n, x), k, y), ", "); ); print(););} \\ Michel Marcus, Apr 11 2015
Formula
Double e.g.f.: exp((exp(x)-1)*(exp(y)-1)).
T(n,k) = Sum{m=1..min(k,n-k+1)} m!*stirling2(k,m)*stirling2(n-k+1,m). - Vladimir Kruchinin, Apr 11 2015
Comments