cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108470 Table read by antidiagonals: T(n,k) = number of labeled partitions of (n,k) into pairs (i,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 15, 1, 1, 31, 79, 79, 31, 1, 1, 63, 241, 339, 241, 63, 1, 1, 127, 727, 1351, 1351, 727, 127, 1, 1, 255, 2185, 5235, 6721, 5235, 2185, 255, 1, 1, 511, 6559, 20119, 31831, 31831, 20119, 6559, 511, 1, 1, 1023, 19681, 77379
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

Partitions of n black objects labeled 1..n and n white objects labeled 1..n. Each partition must have at least one black object and at least one white object.

Examples

			1 1 1 1 1 ...
1 3 7 15 31 ...
1 7 25 79 241 ...
1 15 79 339 1351 ...
1 31 241 1351 6721 ...
		

Crossrefs

Cf. A108461. Columns 1-3: A000012, A000225, A058481. Main diagonal: A023997.

Programs

  • Maxima
    T(n,k):=sum(m!*stirling2(k,m)*stirling2(n-k+1,m),m,1,min(k,n-k+1)); /* Vladimir Kruchinin, Apr 11 2015 */
    
  • PARI
    antidiag(nn) = {for (n=1, nn, for (k=1, n, print1(sum(m=1, min(k, n-k+1), m!*stirling(k, m, 2)*stirling(n-k+1, m, 2)), ", "); ); print(););} \\ Michel Marcus, Apr 11 2015
    
  • PARI
    tabl(nn) = {default(seriesprecision, nn); for (n=1, nn, for (k=1, nn, print1(k!*polcoeff(polcoeff(n!*exp((exp(x)-1)*(exp(y)-1))+O(x^(n+1)), n, x), k, y), ", "); ); print(););} \\ Michel Marcus, Apr 11 2015

Formula

Double e.g.f.: exp((exp(x)-1)*(exp(y)-1)).
T(n,k) = Sum{m=1..min(k,n-k+1)} m!*stirling2(k,m)*stirling2(n-k+1,m). - Vladimir Kruchinin, Apr 11 2015