cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108492 Sum of NumberOfParts!/NumberOfDifferentParts! for all integer partitions of n.

Original entry on oeis.org

1, 1, 3, 8, 31, 141, 819, 5562, 43773, 389203, 3858136, 42152116, 503098359, 6511429138, 90824834615, 1358130449902, 21672033893102, 367570633594883, 6602838664294634, 125228962373218571, 2500582942246200527, 52437202425839368049, 1152133477802718430790
Offset: 0

Views

Author

Thomas Wieder, Jun 05 2005

Keywords

Examples

			a(4) = 31 because n=4 has the following A000041(4) = 5 partitions:
i=1: (1111) with p(1,4)=4, d(1,4)=1; 4!/1! = 24;
i=2: (112)  with p(2,4)=3, d(2,4)=2; 3!/2! =  3;
i=3: (13)   with p(3,4)=2, d(3,4)=2; 2!/2! =  1;
i=4: (4)    with p(4,4)=1, d(4,4)=1; 1!/1! =  1;
i=5: (22)   with p(5,4)=2, d(5,4)=1; 2!/1! =  2;
Their contributions sum up to 24+3+1+1+2 = 31 = a(4).
		

Crossrefs

Programs

  • Maple
    A108492 := proc(n::integer) local i,prttnlst,prttn,ZahlTeile,liste,ZahlVerschiedenerTeile,A108492;
    # Procedure A108492 calculates the sequence A108492 for the integer partitions of n. prttn = an integer partition of n. See also http://www.thomas-wieder.privat.t-online.de/default.html
    prttnlst:=partition(n); A108492 := 0; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; ZahlTeile := nops(prttn); liste := convert(prttn,multiset); ZahlVerschiedenerTeile := nops(liste); A108492 := A108492 + (ZahlTeile!/ZahlVerschiedenerTeile!); od; print(n,A108492); end proc;
    # Second Maple program:
    b:= proc(n,i,l,p,d) option remember;
          if n<0 then 0
        elif n=0 then p!/d!
        elif i=0 then 0
        else b(n, i-1, l, p, d) +b(n-i, i, i, p+1, `if`(i=l, d, d+1))
          fi
        end:
    a:= n-> b(n, n, 0, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 25 2011
  • Mathematica
    b[n_, i_, l_, p_, d_] := b[n, i, l, p, d] = Which[n<0, 0, n==0, p!/d!, i==0, 0, True, b[n, i-1, l, p, d]+b[n-i, i, i, p+1, If[i==l, d, d+1]]];
    a[n_] := b[n, n, 0, 0, 0];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..A000041(n)} p(i,n)!/d(i,n)! with p(i,n) = number of parts of the i-th partition of n and d(i,n) = number of different parts of the i-th partition of n.
a(n) ~ n! * (1 + 1/(2*n) + 1/n^2 + 13/(6*n^3) + 19/(3*n^4) + 22/n^5 + 2057/(24*n^6)). - Vaclav Kotesovec, Sep 06 2015