A108514 If n is a power of 2, a(n)=n; otherwise a(n) = (p-1)*n/p where p = smallest odd prime divisor of n.
1, 2, 2, 4, 4, 4, 6, 8, 6, 8, 10, 8, 12, 12, 10, 16, 16, 12, 18, 16, 14, 20, 22, 16, 20, 24, 18, 24, 28, 20, 30, 32, 22, 32, 28, 24, 36, 36, 26, 32, 40, 28, 42, 40, 30, 44, 46, 32, 42, 40, 34, 48, 52, 36, 44, 48, 38, 56, 58, 40, 60, 60, 42, 64, 52, 44, 66, 64, 46, 56, 70, 48, 72, 72, 50
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Z. Nedev, A Reduced Computational Complexity Strategy for the Magnus-Derek Game, International Mathematical Forum, Vol. 9, 2014, no. 7, pp. 325 - 333. See p. 326.
- Z. Nedev and S. Muthukrishnan, The Nagger-Mover Game, DIMACS Tech. Report 2005-22.
Crossrefs
Cf. A108738.
Programs
-
Maple
with(numtheory): a:=proc(n) local nn: nn:=factorset(n): if n=1 then 1 elif nn={2} then n elif nn[1]=2 then (nn[2]-1)*n/nn[2] else (nn[1]-1)*n/nn[1] fi end:
-
Mathematica
Array[If[IntegerQ@ Log2@ #1, #1, #1 (#2 - 1)/#2] & @@ {#, SelectFirst[FactorInteger[#][[All, 1]], # > 2 &]} &, 75] (* Michael De Vlieger, Oct 25 2017 *)
-
PARI
first(n) = {my(res = vector(n, i, i)); forprime(p = 3, n, for(k = 1, n\p, if(res[k*p] == k*p, res[k*p]*=(p-1)/p))); res} \\ David A. Corneth, Oct 25 2017
Extensions
Definition revised by N. J. A. Sloane, Oct 28 2017 at the suggestion of Michel Marcus.