cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108556 Triangle, read by rows, where row n equals the inverse binomial transform of the crystal ball sequence for D_n lattice.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 12, 30, 20, 1, 24, 120, 192, 96, 1, 40, 330, 940, 1080, 432, 1, 60, 732, 3200, 6240, 5568, 1856, 1, 84, 1414, 8708, 25200, 37184, 27104, 7744, 1, 112, 2480, 20352, 80960, 173824, 206080, 126976, 31744, 1, 144, 4050, 42588, 221544, 643824, 1096032, 1085760, 579456, 128768
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n equals the inverse binomial transform of row n of the square array A108553.
Array of f-vectors for type D root polytopes [Ardila et al.]. See A063007 and A127674 for the arrays of f-vectors for type A and type C root polytopes respectively. - Peter Bala, Oct 23 2008

Examples

			Triangle begins:
1;
1,2;
1,4,4;
1,12,30,20;
1,24,120,192,96;
1,40,330,940,1080,432;
1,60,732,3200,6240,5568,1856;
1,84,1414,8708,25200,37184,27104,7744;
1,112,2480,20352,80960,173824,206080,126976,31744; ...
		

Crossrefs

Cf. A108553, A108557 (row sums), A108558, Rows are inverse binomial transforms of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).

Programs

  • Mathematica
    T[n_, k_] := Module[{A}, A = Table[Table[If[r - 1 == 0 || c - 1 == 0, 1, If[r - 1 == 1, 2c - 1, Sum[Binomial[r + c - j - 2, c - j - 1] (Binomial[2r - 2, 2j] - 2(r - 1) Binomial[r - 3, j - 1]), {j, 0, c - 1}]]], {c, 1, n + 1}], {r, 1, n + 1}]; SeriesCoefficient[((A[[n + 1]]. x^Range[0, n]) /. x -> x/(1 + x))/(1 + x), {x, 0, k}]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2018, from PARI *)
  • PARI
    T(n,k)=local(A=vector(n+1,r,vector(n+1,c,if(r-1==0 || c-1==0,1,if(r-1==1,2*c-1, sum(j=0,c-1,binomial(r+c-j-2,c-j-1)*(binomial(2*r-2,2*j)-2*(r-1)*binomial(r-3,j-1)))))))); polcoeff(subst(Ser(A[n+1]),x,x/(1+x))/(1+x),k)

Formula

Main diagonal equals A008353: 2^(n-1)*(2^n-n) for n>1.
O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + 2*x)*z + (3 + 8*x + 8*x^2)*z^2 - (1 + 2*x)*(1 - 6*x - 6*x^2)z^3 - 8*x*(1 + x)(1 + 2*x + 2*x^2)*z^4 + 2*x*(1 + x)*(1 + 2*x)*z^5 and D(x,z) = ((1-z)^2 - 4*x*z)*(1 - z*(1 + 2*x))^2. - Peter Bala, Oct 23 2008