cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115660 Expansion of (phi(q) * phi(q^6) - phi(q^2) * phi(q^3)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -1, 1, -2, 1, 2, -1, 1, 2, -2, -1, 0, -2, 2, 1, 0, -1, 0, -2, -2, 2, 0, 1, 3, 0, -1, 2, -2, -2, 2, -1, 2, 0, -4, 1, 0, 0, 0, 2, 0, 2, 0, -2, -2, 0, 0, -1, 3, -3, 0, 0, -2, 1, 4, -2, 0, 2, -2, 2, 0, -2, 2, 1, 0, -2, 0, 0, 0, 4, 0, -1, 2, 0, -3, 0, -4, 0
Offset: 1

Views

Author

Michael Somos, Jan 28 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 41 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012

Examples

			G.f. = q - q^2 - q^3 + q^4 - 2*q^5 + q^6 + 2*q^7 - q^8 + q^9 + 2*q^10 - 2*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^6] QPochhammer[ q^24] / (QPochhammer[ q^3] QPochhammer[ q^8]), {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6] - EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ 2, d] KroneckerSymbol[ -3, n/d], {d, Divisors[ n]}]]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # < 5, (-1)^#2, Mod[#, 24] < 12, (#2 + 1) KroneckerSymbol[ #, 12]^#2, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])]; (* Michael Somos, Oct 22 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, (-1)^e, p%24<12, (e+1) * kronecker( p, 12)^e, 1-e%2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A) / (eta(x^3 + A) * eta(x^8 + A)), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( 2, d) * kronecker( -3, n/d)))};

Formula

Expansion of eta(q) * eta(q^4) * eta(q^6) * eta(q^24) / (eta(q^3) * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, -1, -2, -1, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = (-1)^e, a(p^e) = e+1 if p == 1, 7 (mod 24), a(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker(k,8) * x^k / (1 + x^k + x^(2*k)) = Sum_{k>0} Kronecker(k,3) * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
abs(a(n)) = A000377(n). a(n) = (-1)^n * A128581(n). a(2*n) = a(3*n) = -a(n). a(2*n + 1) = A128580(n). - Michael Somos, Mar 14 2012
abs(a(n)) = A192013(n) unless n=0. - Michael Somos, Oct 22 2015
a(3*n + 1) = A263571(n). a(4*n) = A259668(n). a(6*n + 1) = A261115(n). a(6*n + 4) = A263548(n). a(8*n + 1) = A260308(n). - Michael Somos, Oct 22 2015
a(n) = A000377(n) - A108563(n) = A046113(n) - A000377(n). - Michael Somos, Oct 22 2015

A002480 Numbers of the form 2x^2 + 3y^2.

Original entry on oeis.org

0, 2, 3, 5, 8, 11, 12, 14, 18, 20, 21, 27, 29, 30, 32, 35, 44, 45, 48, 50, 53, 56, 59, 62, 66, 72, 75, 77, 80, 83, 84, 93, 98, 99, 101, 107, 108, 110, 116, 120, 125, 126, 128, 131, 140, 146, 147, 149, 155, 158, 162
Offset: 1

Views

Author

Keywords

References

  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 425.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes see A084865.
Cf. A000075 (growth), A002481, A108563.

A317642 Expansion of theta_3(q^2)*theta_3(q^5), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 2, 0, 0, 2, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 2, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 2*x^2 + 5*y^2 = n.

Examples

			G.f. = 1 + 2*q^2 + 2*q^5 + 4*q^7 + 2*q^8 + 4*q^13 + 2*q^18 + 2*q^20 + 4*q^22 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 98; CoefficientList[Series[EllipticTheta[3, 0, q^2] EllipticTheta[3, 0, q^5], {q, 0, nmax}], q]
    nmax = 98; CoefficientList[Series[QPochhammer[-q^2, -q^2] QPochhammer[-q^5, -q^5]/(QPochhammer[q^2, -q^2] QPochhammer[q^5, -q^5]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(4*k-2))^2*(1 - x^(4*k))*(1 + x^(10*k-5))^2*(1 - x^(10*k)).

A317643 Expansion of theta_3(q^3)*theta_3(q^4), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 3*x^2 + 4*y^2 = n.

Examples

			G.f. = 1 + 2*q^3 + 2*q^4 + 4*q^7 + 2*q^12 + 6*q^16 + 4*q^19 + 2*q^27 + 4*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q^3] EllipticTheta[3, 0, q^4], {q, 0, nmax}], q]
    nmax = 100; CoefficientList[Series[QPochhammer[-q^3, -q^3] QPochhammer[-q^4, -q^4]/(QPochhammer[q^3, -q^3] QPochhammer[q^4, -q^4]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(6*k-3))^2*(1 - x^(6*k))*(1 + x^(8*k-4))^2*(1 - x^(8*k)).
Showing 1-4 of 4 results.