cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108578 Number of 3 X 3 magic squares with magic sum 3n.

Original entry on oeis.org

0, 0, 0, 0, 8, 24, 32, 56, 80, 104, 136, 176, 208, 256, 304, 352, 408, 472, 528, 600, 672, 744, 824, 912, 992, 1088, 1184, 1280, 1384, 1496, 1600, 1720, 1840, 1960, 2088, 2224, 2352, 2496, 2640, 2784, 2936, 3096, 3248, 3416, 3584, 3752, 3928, 4112, 4288
Offset: 1

Views

Author

Thomas Zaslavsky and Ralf Stephan, Jun 11 2005

Keywords

Comments

Contribution from Thomas Zaslavsky, Mar 12 2010: (Start)
A magic square has distinct positive integers in its cells, whose sum is the same (the "magic sum") along any row, column, or main diagonal.
a(n) is given by a quasipolynomial of period 6. (End)

Examples

			a(5) = 8 because there are 8 3 X 3 magic squares with entries 1,...,9 and magic sum 15.
		

Crossrefs

Equals 8 times the second differences of A055328.

Programs

  • Magma
    I:=[0,0,0,0,8,24]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Sep 01 2018
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 8, 24}, 50] (* Jean-François Alcover, Sep 01 2018 *)
    CoefficientList[Series[8 x^4 (1 + 2 x) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 01 2018 *)
  • PARI
    a(n)=(1/9)*(2*n^2-32*n+[144,78,120,126,96,102][(n%18)/3+1])
    
  • PARI
    x='x+O('x^99); concat(vector(4), Vec(8*x^5*(1+2*x)/((1-x)*(1-x^2)*(1-x^3)))) \\ Altug Alkan, Sep 01 2018
    

Formula

G.f.: [8*x^5*(1+2*x)] / [(1-x)*(1-x^2)*(1-x^3)].
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - Vincenzo Librandi, Sep 01 2018

Extensions

Edited by N. J. A. Sloane, Feb 05 2010
Corrected g.f. to account for previous change in parameter n from magic sum s to s/3; by Thomas Zaslavsky, Mar 12 2010