A108606 Semiprimes with prime sum of digits.
14, 21, 25, 34, 38, 49, 58, 65, 74, 85, 94, 106, 111, 115, 119, 122, 133, 142, 146, 155, 166, 201, 203, 205, 209, 214, 218, 221, 247, 254, 265, 274, 278, 287, 289, 298, 302, 319, 326, 335, 346, 355, 362, 371, 377, 382, 386, 391, 395, 403, 407, 427, 445, 454
Offset: 1
Examples
34 = 2*17 (semiprime) and 2 + 17 = 19 is prime.
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A108606=Select[Range[1000], Plus@@(Transpose[FactorInteger[ # ]])[[2]]==2&& PrimeQ[Plus@@IntegerDigits[ # ]]&] DeleteCases[ParallelTable[If[PrimeOmega[n]==2&&PrimeQ[Total[IntegerDigits[n]]],n,a],{n,0,126181}],a] (* J.W.L. (Jan) Eerland, Dec 21 2021 *)
-
PARI
select(isA108606(n)={bigomega(n)==2&&isprime(sumdigits(n))},[1..1000]) \\ J.W.L. (Jan) Eerland, Dec 23 2021
-
Python
from sympy import isprime, factorint def ok(n): return isprime(sum(map(int, str(n)))) and sum(factorint(n).values()) == 2 print([k for k in range(455) if ok(k)]) # Michael S. Branicky, Aug 22 2022
Comments