A108708 Maximum side length in Pythagorean triangles with hypotenuse n.
0, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 12, 0, 12, 0, 15, 0, 0, 16, 0, 0, 0, 0, 24, 24, 0, 0, 21, 24, 0, 0, 0, 30, 28, 0, 35, 0, 36, 32, 40, 0, 0, 0, 36, 0, 0, 0, 0, 48, 45, 48, 45, 0, 44, 0, 0, 42, 0, 48, 60, 0, 0, 0, 63, 0, 0, 60, 0, 56, 0, 0, 55, 70, 72, 0, 0, 72, 0, 64, 0, 80, 0, 0, 84, 0, 63, 0
Offset: 1
Keywords
Examples
a(5) is 4 as the maximum side (other than the hypotenuse) a right triangle with integer sides and hypotenuse 5 can have.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{k = n - 1, m = Sqrt[n/2]}, While[k > m && !IntegerQ[Sqrt[n^2 - k^2]], k-- ]; If[k <= m, 0, k]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Jun 21 2005 *)
-
PARI
first(n) = {my(lh = List(), res = vector(n)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = max(res[i*(u^2+v^2)], max(i*(u^2 - v^2), i*2*u*v)); ); ); ); ); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000
Extensions
More terms from Robert G. Wilson v, Jun 21 2005