A108759 Triangle read by rows: T(n,k) = binomial(3k,k)*binomial(n+k,3k)/(2k+1) (0 <= k <= floor(n/2)).
1, 1, 1, 1, 1, 4, 1, 10, 3, 1, 20, 21, 1, 35, 84, 12, 1, 56, 252, 120, 1, 84, 630, 660, 55, 1, 120, 1386, 2640, 715, 1, 165, 2772, 8580, 5005, 273, 1, 220, 5148, 24024, 25025, 4368, 1, 286, 9009, 60060, 100100, 37128, 1428, 1, 364, 15015, 137280, 340340, 222768
Offset: 0
Examples
Table begins n\k..0....1....2....3....4 0 |..1 1 |..1 2 |..1....1 3 |..1....4 4 |..1...10....3 5 |..1...20...21 6 |..1...35...84...12 7 |..1...56..252..120 8 |..1...84..630..660...55 The ordered trees on 3 edges with 1 node adjacent to a leaf are (drawn down from the root) /\..../\....| |......|..../\ together with the path of 3 edges; so T(3,1)=4. (Example reworked by _David Callan_, Oct 08 2005)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10200 (rows 0 <= n <= 200, flattened)
- David Callan, Some Identities for the Catalan and Fine Numbers, arXiv:math/0502532 [math.CO], 2005.
- Wenqin Cao, Emma Yu Jin, and Zhicong Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Applied Mathematics (2019); see also author's copy
- Thomas Einolf, Robert Muth, and Jeffrey Wilkinson, Injectively k-colored rooted forests, arXiv:2107.13417 [math.CO], 2021.
- Sergey Kitaev and Philip B. Zhang, Non-overlapping descents and ascents in stack-sortable permutations, arXiv:2310.17236 [math.CO], 2023.
- Heinrich Niederhausen, Catalan Traffic at the Beach, Electronic Journal of Combinatorics, Volume 9 (2002), #R33 (p.12).
- Yidong Sun, A simple bijection between binary trees and colored ternary trees, arXiv:0805.1279 [math.CO], 2008.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
Programs
-
Maple
T:=(n,k)->binomial(3*k,k)*binomial(n+k,3*k)/(2*k+1): for n from 0 to 14 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
Mathematica
Flatten[Table[Binomial[3k,k] Binomial[n+k,3k]/(2k+1),{n,0,20},{k,0,Floor[n/2]}]] (* Harvey P. Dale, May 08 2012 *)
Formula
T(n,k) = binomial(n+1,2k+1) * binomial(n+k,k) / (n+1).
Sum_{k=0..floor(n/2)} T(n,k)*2^k = A049171(n+1). - Philippe Deléham, Dec 08 2009
Comments