cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208276 Number of Poulet numbers (or pseudoprimes to base 2, A001567) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 8, 13, 19, 32, 45, 64, 89, 124, 175, 251, 361, 502, 693, 944, 1264, 1713, 2361, 3169, 4232, 5749, 7750, 10403, 14011, 18667, 24958, 33389, 44540, 59565, 79343, 105659, 141147, 188231, 250568, 333737, 445316, 593366, 792172, 1059097, 1416055, 1893726, 2532703, 3390284, 4540673, 6086093, 8167163, 10964612, 14731767, 19806649, 26651383, 35893886, 48374139, 65247459, 88069251, 118968378
Offset: 1

Views

Author

Washington Bomfim, Feb 25 2012

Keywords

Crossrefs

Programs

  • PARI
    count=0;for(e=1,32,forcomposite(n=2^(e-1),2^e-1,if(n%2 && Mod(2,n)^(n-1)==1,count++)); print1(count", ")); \\ Hans Loeblich, May 15 2019

Extensions

a(50)-a(64) from Feitsma's website, added by Max Alekseyev, Apr 23 2013

A225005 Number of Carmichael numbers (A002997) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 6, 9, 10, 15, 19, 23, 33, 45, 55, 69, 95, 130, 162, 214, 290, 375, 483, 656, 864, 1118, 1446, 1874, 2437, 3130, 4058, 5188, 6642, 8521, 11002, 14236, 18400, 23631, 30521, 39376, 50685, 65590, 84817, 109857, 141892, 183507, 237217, 307278, 398506, 517446, 672105, 873109, 1136472, 1479525, 1927138, 2513234, 3278553, 4279356
Offset: 1

Views

Author

Max Alekseyev, Apr 23 2013

Keywords

Crossrefs

Partial sums of A182490.

A329237 The number of base-2 Euler-Jacobi pseudoprimes (A047713) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 8, 10, 15, 20, 29, 42, 57, 81, 118, 179, 246, 348, 481, 654, 893, 1231, 1642, 2188, 3003, 4033, 5367, 7252, 9681, 12961, 17460, 23351, 31224, 41623, 55455, 74124, 99127, 132426, 176466, 235792, 314338, 420106, 562476, 751769, 1006184
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2019

Keywords

Examples

			Below 2^10 = 1024 there is only one Euler-Jacobi pseudoprime, 561. Therefore a(10) = 1.
		

Crossrefs

Programs

  • Mathematica
    ejpspQ[n_] := CompositeQ[n] && PowerMod[2, (n - 1)/2, n] == Mod[JacobiSymbol[2, n], n]; s = {}; c = 0; p = 2; n = 1; Do[If[ejpspQ[n], c++]; If[n > p, AppendTo[s, c]; p *= 2], {n, 1, 2^20 + 1, 2}]; s
Showing 1-3 of 3 results.