cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108797 Number of base-2 strong pseudoprimes (A001262) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 4, 6, 7, 11, 18, 24, 34, 49, 75, 104, 147, 210, 296, 409, 552, 734, 981, 1311, 1736, 2314, 3093, 4139, 5511, 7396, 9835, 13106, 17493, 23270, 31115, 41664, 55763, 74739, 100342, 134559, 180725, 243566, 327731, 441270, 594585, 803252, 1085426, 1468777, 1988905, 2697846, 3662239, 4976375, 6767707, 9212942, 12552513, 17114780, 23355139, 31894014
Offset: 1

Views

Author

Keywords

Examples

			a(12)=3 since 2047, 3277 and 4033 are the 2-SPSPs less than 4096.
		

Crossrefs

Extensions

a(24)-a(64) from Charles R Greathouse IV, Jan 28 2011, based on the calculations of Jan Feitsma.
a(1)=...=a(10)=0 prepended by Max Alekseyev, Apr 23 2013

A225005 Number of Carmichael numbers (A002997) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 6, 9, 10, 15, 19, 23, 33, 45, 55, 69, 95, 130, 162, 214, 290, 375, 483, 656, 864, 1118, 1446, 1874, 2437, 3130, 4058, 5188, 6642, 8521, 11002, 14236, 18400, 23631, 30521, 39376, 50685, 65590, 84817, 109857, 141892, 183507, 237217, 307278, 398506, 517446, 672105, 873109, 1136472, 1479525, 1927138, 2513234, 3278553, 4279356
Offset: 1

Views

Author

Max Alekseyev, Apr 23 2013

Keywords

Crossrefs

Partial sums of A182490.

A329237 The number of base-2 Euler-Jacobi pseudoprimes (A047713) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 8, 10, 15, 20, 29, 42, 57, 81, 118, 179, 246, 348, 481, 654, 893, 1231, 1642, 2188, 3003, 4033, 5367, 7252, 9681, 12961, 17460, 23351, 31224, 41623, 55455, 74124, 99127, 132426, 176466, 235792, 314338, 420106, 562476, 751769, 1006184
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2019

Keywords

Examples

			Below 2^10 = 1024 there is only one Euler-Jacobi pseudoprime, 561. Therefore a(10) = 1.
		

Crossrefs

Programs

  • Mathematica
    ejpspQ[n_] := CompositeQ[n] && PowerMod[2, (n - 1)/2, n] == Mod[JacobiSymbol[2, n], n]; s = {}; c = 0; p = 2; n = 1; Do[If[ejpspQ[n], c++]; If[n > p, AppendTo[s, c]; p *= 2], {n, 1, 2^20 + 1, 2}]; s
Showing 1-3 of 3 results.