A108873 Numbers n whose base 3 representations, interpreted as base 10 integers, are semiprimes.
3, 7, 8, 13, 16, 17, 19, 20, 25, 31, 37, 40, 43, 47, 49, 61, 64, 65, 71, 73, 82, 88, 89, 92, 97, 100, 101, 106, 110, 115, 118, 121, 127, 136, 142, 143, 155, 179, 184, 187, 188, 191, 209, 232, 235, 244, 250, 254, 259, 262, 263, 265, 269, 274, 281, 289, 299, 314, 319
Offset: 1
Examples
a(1) = 3 because 3 (base 10) = 10 (base 3) and 10 base 10 = 2 * 5. a(2) = 7 because 7 (base 10) = 21 (base 3) and 21 base 10 = 3 * 7. a(4) = 13 because 13 (base 10) = 111 (base 3) and 111 base 10 = 3 * 37. a(12) = 40 because 40 (base 10) = 1111 (base 3) and 1111 base 10 = 11 * 101. a(21) = 82 because 82 (base 10) = 10001 (base 3) and 10001 base 10 = 73 * 137. a(26) = 100 because 100 (base 10) = 10201 (base 3) and 10201 base 10 = 101^2.
Crossrefs
Programs
-
Maple
with(numtheory): a:=proc(n) local nn, nnn: nn:=convert(n,base,3): nnn:=add(nn[j]*10^(j-1),j=1..nops(nn)): if bigomega(nnn)=2 then n else fi end: seq(a(n),n=1..350); # Emeric Deutsch, Jul 16 2005
-
Mathematica
Select[Range[319], Plus @@ Last /@ FactorInteger[FromDigits[IntegerDigits[ #, 3]]] == 2 &] (* Ray Chandler, Sep 21 2005*)
Extensions
More terms from Emeric Deutsch, Jul 16 2005