cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A370627 a(n) = 2^(n - 1)*((-1)^(n + 1) + 7*2^n)/3 = 2^(n - 1)*A062092(n).

Original entry on oeis.org

1, 5, 18, 76, 296, 1200, 4768, 19136, 76416, 305920, 1223168, 4893696, 19572736, 78295040, 313171968, 1252704256, 5010784256, 20043202560, 80172679168, 320690978816, 1282763390976, 5131054612480, 20524216352768, 82096869605376, 328387470032896, 1313549896908800, 5254199554080768
Offset: 0

Views

Author

Paul Curtz, Jul 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 8}, {1, 5}, 27] (* Amiram Eldar, Jul 03 2024 *)
  • PARI
    a(n) = 2^(n-1)*((-1)^(n+1) + 7*2^n)/3 \\ Thomas Scheuerle, Jul 03 2024

Formula

Binomial transform of A133125.
G.f.: (1 + 3*x)/(1 - 2*x - 8*x^2).
E.g.f.: (1/3)*exp(x)*(3*exp(3*x) + sinh(3*x)).
a(n) = 2*a(n-1) + 8*a(n-2), for n > 1.
a(n) = 4*a(n-1) + (-2)^n, for n > 0.
a(n) = (a(n+2) - 2*a(n+1))/8.
From Thomas Scheuerle, Jul 03 2024: (Start)
a(n) = 2^(n - 1)*((-1)^(n + 1) + 7*2^n)/3.
a(n) = A003683(n) + 4^n.
a(n) = A255470(2^n - 1) - A255470(2^(n-1) - 1) = A255471(n) - A255471(n-1), for n > 0. (End)
Binomial transform: A108982.
Showing 1-1 of 1 results.