cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108983 Inverse binomial transform of A003950.

Original entry on oeis.org

1, 7, 41, 247, 1481, 8887, 53321, 319927, 1919561, 11517367, 69104201, 414625207, 2487751241, 14926507447, 89559044681, 537354268087, 3224125608521, 19344753651127, 116068521906761, 696411131440567, 4178466788643401
Offset: 0

Views

Author

Philippe Deléham, Jul 23 2005

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,2). [Milan Janjic, Jan 27 2010]

Crossrefs

Cf. A003950.

Programs

  • Magma
    I:=[1,7]; [n le 2 select I[n] else 5*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2014
  • Maple
    seq(-((-1)^n-8*6^n)/7, n=0..100); # Robert Israel, Aug 27 2014
  • Mathematica
    CoefficientList[Series[-(1 + 2 x)/((1 + x) (6 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 27 2014 *)

Formula

a(n) = 5a(n-1) + 6a(n-2), a(0) = 1, a(1) = 7.
a(2n) = 6a(2n-1) - 1; a(2n+1) = 6a(2n) + 1.
O.g.f.: -(1+2x)/[(1+x)(6x-1)]. - R. J. Mathar, Apr 02 2008

Extensions

More terms from R. J. Mathar, Apr 02 2008