A109015 a(n) = gcd(n,12).
12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
Cf. A109004.
Programs
-
Mathematica
GCD[Range[0,100],12] (* or *) PadRight[{},120,{12,1,2,3,4,1,6,1,4,3,2,1}] (* Harvey P. Dale, Dec 20 2018 *)
-
Python
from math import gcd def a(n): return gcd(n, 12) print([a(n) for n in range(99)]) # Michael S. Branicky, Dec 01 2021
Formula
a(n) = 1 + [2|n] + 2*[3|n] + 2*[4|n] + 2*[6|n] + 4*[12|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-12).
Multiplicative with a(p^e, 12) = gcd(p^e, 12). - David W. Wilson, Jun 12 2005
Dirichlet g.f.: zeta(s)*(1 + 1/2^s + 2/4^s)*(1 + 2/3^s). - R. J. Mathar, Apr 08 2011
Comments