cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109022 Integers with mutual residues of 2 or more.

Original entry on oeis.org

3, 5, 8, 14, 23, 38, 44, 53, 59, 62, 68, 74, 83, 122, 134, 143, 158, 164, 173, 179, 188, 194, 203, 218, 227, 242, 263, 278, 284, 293, 302, 314, 338, 362, 374, 383, 398, 404, 422, 428, 443, 452, 458, 467, 479, 482, 503, 509, 524, 539, 542, 548, 554, 563, 578
Offset: 1

Views

Author

Seppo Mustonen, Aug 18 2005

Keywords

Comments

This is the special case k=2 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027 and k=1 prime numbers A000040.

Examples

			The fourth term is 14 since mod(9,3)=0, mod(10,3)=1, mod(11,5)=1,
mod(12,3)=0, mod(13,3)=1 but mod(14,3)=2, mod(14,5)=4, mod(14,8)=6.
		

Crossrefs

Programs

  • Maple
    res_seq:=proc(a::array(1,nonnegint),k,n::nonnegint) local i,j,m,f; a[1]:=k+1; for i from 2 to n do m:=a[i-1]+1; f:=1; while f=1 do j:=1; while j=k do j:=j+1; od; if j=i then a[i]:=m; f:=0; else m:=m+1; fi; od; od; end; a:=array(1..57,[]); res_seq(a,2,57); print(a);
  • Mathematica
    seq[k_, n_] := Module[{a, i, j, m, f}, a = Table[0, {n}]; a[[1]] = k+1; For[i = 2, i <= n, i++, m = a[[i-1]]+1; f = 1; While[f == 1, j = 1; While[j < i && Mod[m, a[[j]]] >= k, j = j+1]; If[j == i, a[[i]] = m; f = 0, m = m+1]]]; a];
    seq[2, 57] (* Jean-François Alcover, Oct 05 2022, after Maple code *)