cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109034 First differences of A109033.

Original entry on oeis.org

1, 0, 1, 4, 16, 66, 280, 1216, 5384, 24224, 110464, 509480, 2372704, 11142656, 52709600, 250933120, 1201354240, 5780413760, 27937867520, 135574988800, 660314620160, 3226731934720, 15815752724480, 77735943378560
Offset: 0

Views

Author

Emeric Deutsch, Jun 16 2005

Keywords

Examples

			G.f. = 1 + x^2 + 4*x^3 + 16*x^4 + 66*x^5 + 280*x^6 + 1216*x^7 + 5384*x^8 + ...
		

Crossrefs

Cf. A109033.

Programs

  • Maple
    G:=(1-sqrt(1-8*x+16*x^2-8*x^3))/4/x: Gser:=series(G,x=0,30): 1,seq(coeff(Gser,x^n),n=1..27);
  • Mathematica
    Join[{1},Differences[CoefficientList[Series[(1-Sqrt[1-8x+16x^2-8x^3])/ (4x(1-x)),{x,0,30}],x]]] (* Harvey P. Dale, Jul 06 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 * (1 - x)^2 / (1 + sqrt(1 - 8*x + 16*x^2 - 8*x^3 + x * O(x^n))), n))} /* Michael Somos, Jan 05 2012 */

Formula

G.f. A(x) = y satisfies 0 = 2*x*y^2 - y + (1-x)^2. - Michael Somos, Jan 05 2012
Given g.f. A(x), then B(x) = (A(x) - 1) / x satisfies B(-B(-x)) = x and B(x) - x = 4 * (B(x) * x) + 2 * (B(x) * x)^2. - Michael Somos, Jan 05 2012
G.f.: 2 * (1 - x)^2 / (1 + sqrt(1 - 8*x + 16*x^2 - 8*x^3)). - Michael Somos, Jan 05 2012
G.f. = (1 - sqrt(1 - 8*x + 16*x^2 - 8*x^3))/(4*x).
a(n) ~ 5^(1/4) * 2^(n-2) * phi^(2*n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 10 2021
D-finite with recurrence (n+1)*a(n) +4*(-2*n+1)*a(n-1) +16*(n-2)*a(n-2) +4*(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 24 2022