cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109060 To compute a(n) we first write down 8^n 1's in a row. Each row takes the rightmost 8th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 8th part. The single element in the last row is a(n).

Original entry on oeis.org

1, 1, 8, 484, 231736, 886208954, 27106585594040, 6632714300472863716, 12983632019302863224103688, 203325054125533158416534341556735, 25472733809776289439071490656049076425792, 25529963965104465687252347321830255523307055463168
Offset: 0

Views

Author

Augustine O. Munagi, Jun 17 2005

Keywords

Examples

			For example, for n=3 the array, from 2nd row, follows:
1..2..3.....53..54..55..56..57..58..59..60..61..62..63..64
............................57.115.174.234.295.357.420.484
.......................................................484
Therefore a(3)=484.
		

Crossrefs

Programs

  • Maple
    proc(n::nonnegint) local f,a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i],i=7*nops(L)/8+1..j),j=7*nops(L)/8+1..nops(L))]; a:=f([seq(1,j=1..8^n)]); while nops(a)>8 do a:=f(a) end do; a[8]; end proc;
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
    a[n_] := A[n, 8];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)

Extensions

More terms from Alois P. Heinz, Jul 06 2022