A109085 G.f. A(x) satisfies: A(x) = P(x*A(x)) where P(x) = A(x/P(x)) is the g.f. of the partition numbers A000041.
1, 1, 3, 10, 38, 153, 646, 2816, 12585, 57343, 265401, 1244256, 5896512, 28200365, 135935424, 659754072, 3221354296, 15812501100, 77985955410, 386254209762, 1920391362054, 9580985321554, 47951223856445, 240680464689600
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + ... G.f. satisfies: P(x*A(x)) = A(x) where P(x) is the partition function: P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ... The g.f. A = A(x) also satisfies the identities: (1) A(x) = 1/((1-x*A) * (1-x^2*A^2) * (1-x^3*A^3) * (1-x^4*A^4) * ...). (2) A(x) = 1 + x*A/(1-x*A) + x^2*A^2/((1-x*A)*(1-x^2*A^2)) + x^3*A^3/((1-x*A)*(1-x^2*A^2)*(1-x^3*A^3)) + ... (3) A(x) = 1 + x*A/(1-x*A)^2 + x^4*A^4/((1-x*A)*(1-x^2*A^2))^2 + x^9*A^9/((1-x*A)*(1-x^2*A^2)*(1-x^3*A^3))^2 + ... The logarithm of the g.f. is given by: log(A(x)) = x*A(x)/(1-x*A(x)) + x^2*A(x)^2/(2*(1-x^2*A(x)^2)) + x^3*A(x)^3/(3*(1-x^3*A(x)^3)) + x^4*A(x)^4/(4*(1-x^4*A(x)^4)) + x^5*A(x)^5/(5*(1-x^5*A(x)^5)) + ... Explicitly, log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 105*x^4/4 + 506*x^5/5 + 2492*x^6/6 + 12405*x^7/7 + 62337*x^8/8 + ... + A008485(n)*x^n/n + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO]; see p.5 and p.32
- Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications,arXiv:0805.1398v1 [math.CO], see p.5
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Programs
-
Mathematica
A109085list[n_] := Module[{m = 1, A = 1 + x}, For[i = 1, i <= n, i++, A = 1/Product[(1 - x^k*(A + x*O[x]^n)^k), {k, 1, n}]]; CoefficientList[A, x][[1 ;; n]]]; A109085list[24] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *) InverseSeries[x QPochhammer[x] + O[x]^25][[3]] (* Vladimir Reshetnikov, Nov 17 2016 *) Table[SeriesCoefficient[1/QPochhammer[x, x]^(n+1), {x, 0, n}]/(n+1), {n, 0, 24}] (* Vladimir Reshetnikov, Nov 20 2016 *)
-
PARI
{a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))),n)} for(n=0,30,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A+x*O(x^n))^k))); polcoeff(A, n)}
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0,n,x^m*A^m/prod(k=1, m, (1-x^k*(A+x*O(x^n))^k)))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 24 2012 for(n=0,30,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0,sqrtint(n+1),(x*A)^(m^2)/prod(k=1, m, (1-x^k*(A+x*O(x^n))^k)^2))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 24 2012 for(n=0,30,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(x^m*A^m/m)/(1-x^m*A^m+x*O(x^n)) )));polcoeff(A,n)} \\ Paul D. Hanna, Jun 01 2011
-
PARI
{A008485(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)} {a(n)=polcoeff(exp(sum(m=1,n,A008485(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2012
Formula
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x*eta(x)), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.
(2) A(x) = 1/G(x) where G(x) is g.f. of A109084.
(3) A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^n).
(4) A(x) = Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1-x^k*A(x)^k).
(5) A(x) = Sum_{n>=0} (x*A(x))^(n^2) / Product_{k=1..n} (1-x^k*A(x)^k)^2.
(6) A(x) = exp( Sum_{n>=1} (x^n/n) * A(x)^n/(1 - x^n*A(x)^n) ). - Paul D. Hanna, Jun 01 2011
Logarithmic derivative yields A008485, where A008485(n) is the number of partitions of n into parts of n kinds. - Paul D. Hanna, Feb 06 2012
a(n) = ([x^n] 1/((x; x)inf)^(n+1))/(n+1), where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(n) ~ c * d^n / n^(3/2), where d = A270915 = 5.3527013334866426877724... and c = A366022 = 0.489635226684303373081541660578468619322416625... . - Vaclav Kotesovec, Nov 21 2016
Comments