A109134 Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2.
1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7
Offset: 1
Examples
1.75487766624669276004950889635852869189460661777279314398928397064...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.11, p. 340.
- Martin Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Simon Baker, On small bases which admit countably many expansions, Journal of Number Theory, Volume 147, February 2015, Pages 515-532.
- Simon Plouffe, Plouffe's Inverter .
- Nikita Sidorov, Expansions in non-integer bases: Lower, middle and top orders, Journal of Number Theory, Volume 129, Issue 4, April 2009, Pages 741-754. See Prop. 2.3 p. 744.
- Yuru Zou and Derong Kong, On a problem of countable expansions, Journal of Number Theory, Volume 158, January 2016, Pages 134-150. See Theorem 1.1 p. 135.
- Index entries for algebraic numbers, degree 3.
Programs
-
Mathematica
FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *) Root[x^3-2x^2+x-1, x, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
-
PARI
d=104;default(realprecision,d);print(k=solve(x=1,2,(x-1)^2-1/x)); for(c=0,d,z=floor(k);print1(z,",",);k=10*(k-z))
-
PARI
polrootsreal(x^3-2*x^2+x-1)[1] \\ Charles R Greathouse IV, Aug 15 2014
Formula
Equals 1+A075778. - R. J. Mathar, Aug 20 2008
Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014
Equals Rho^2 where Rho is the plastic number 1.3247179572...(see A060006). - Philippe Deléham, Sep 29 2020
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 + 3*sqrt(69))/2)^(-1/3))/3.
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 - 3*sqrt(69))/2)^(1/3))/3.
Equals 2*(1 + cosh((1/3)*arccosh(25/2)))/3. (End)
Equals - Sum_{k>=1} Gamma(k - k/5 - 1)*Gamma(k/5 + 1)*sin(3*k*Pi/5)/(k*Pi*Gamma(k)). - Antonio Graciá Llorente, Dec 14 2024
Extensions
Extended by Klaus Brockhaus and Robert G. Wilson v, Aug 19 2005
Comments