cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109202 Minimal value of k>0 such that n^7 + k^2 is a semiprime.

Original entry on oeis.org

2, 3, 1, 2, 5, 6, 7, 4, 5, 8, 1, 6, 7, 5, 27, 16, 1, 12, 1, 2, 3, 8, 3, 6, 7, 2, 5, 2, 3, 12, 7, 4, 9, 2, 5, 6, 7, 4, 21, 2, 9, 4, 11, 6, 3, 4, 1, 2, 7, 25, 21, 14, 1, 4, 5, 4, 15, 8, 3, 22, 17, 8, 21, 10, 5, 2, 1, 14, 9, 32, 11, 6, 1, 13, 3, 2, 3, 3, 1, 2, 63, 4, 5, 10, 11, 9, 9, 4, 5, 33, 19, 6, 3
Offset: 0

Views

Author

Jonathan Vos Post, Jul 02 2005

Keywords

Comments

It seems that one or more primes nearly always occur before finding the first such semiprime for a given n. There seems to be a high correlation with the n^6 + k^2 sequence (A109201) with 24 times less than 100 the same values A109201(n) = A109202(n) for [n = 0,1,2,6,8,10,20,22,25,27,30,34,39,45,47,54,58,65,71,75,88,91,92,96].

Examples

			a(0) = 2 because 0^7 + 1^2 = 1 is not semiprime, but 0^7 + 2^2 = 4 = 2^2 is.
a(1) = 3 because 1^7 + 1^2 and 1^7 + 2^2 are not semiprime, but 1^7 + 3^2 = 10 = 2 * 5 is semiprime.
a(2) = 1 because 2^7 + 1^2 = 129 = 3 * 43 is semiprime.
a(80) = 63 because 80^7 + 63^2 = 20971520003969 = 47363 * 442782763 and for no smaller k>0 is 80^7 + k^2 a semiprime.
a(100) = 9 because 100^7 + 9^2 = 100000000000081 = 47309 * 2113762709 and for no smaller k>0 is 100^7 + k^2 a semiprime.
		

Crossrefs

Programs

  • Mathematica
    svk[n_]:=Module[{k=1,n7=n^7},While[PrimeOmega[n7+k^2]!=2,k++];k]; Array[ svk,100,0] (* Harvey P. Dale, Mar 01 2017 *)