A109202 Minimal value of k>0 such that n^7 + k^2 is a semiprime.
2, 3, 1, 2, 5, 6, 7, 4, 5, 8, 1, 6, 7, 5, 27, 16, 1, 12, 1, 2, 3, 8, 3, 6, 7, 2, 5, 2, 3, 12, 7, 4, 9, 2, 5, 6, 7, 4, 21, 2, 9, 4, 11, 6, 3, 4, 1, 2, 7, 25, 21, 14, 1, 4, 5, 4, 15, 8, 3, 22, 17, 8, 21, 10, 5, 2, 1, 14, 9, 32, 11, 6, 1, 13, 3, 2, 3, 3, 1, 2, 63, 4, 5, 10, 11, 9, 9, 4, 5, 33, 19, 6, 3
Offset: 0
Examples
a(0) = 2 because 0^7 + 1^2 = 1 is not semiprime, but 0^7 + 2^2 = 4 = 2^2 is. a(1) = 3 because 1^7 + 1^2 and 1^7 + 2^2 are not semiprime, but 1^7 + 3^2 = 10 = 2 * 5 is semiprime. a(2) = 1 because 2^7 + 1^2 = 129 = 3 * 43 is semiprime. a(80) = 63 because 80^7 + 63^2 = 20971520003969 = 47363 * 442782763 and for no smaller k>0 is 80^7 + k^2 a semiprime. a(100) = 9 because 100^7 + 9^2 = 100000000000081 = 47309 * 2113762709 and for no smaller k>0 is 100^7 + k^2 a semiprime.
Programs
-
Mathematica
svk[n_]:=Module[{k=1,n7=n^7},While[PrimeOmega[n7+k^2]!=2,k++];k]; Array[ svk,100,0] (* Harvey P. Dale, Mar 01 2017 *)
Comments