cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A109206 Minimal value of k>0 such that n^11 + k^2 is a semiprime.

Original entry on oeis.org

2, 3, 1, 2, 3, 6, 1, 4, 9, 8, 13, 4, 1, 2, 3, 8, 7, 6, 5, 28, 3, 4, 5, 6, 5, 2, 9, 4, 9, 6, 29, 2, 15, 7, 5, 48, 5, 5, 33, 8, 7, 24, 17, 4, 15, 14, 11, 4, 5, 8, 9, 10, 7, 6, 31, 8, 3, 4, 5, 18, 13, 34, 5, 2, 5, 18, 35, 12, 15, 2, 27, 6, 31, 5, 3, 34, 5, 9, 7, 2, 3, 4, 13, 14, 23, 2, 15, 22, 21, 48
Offset: 0

Views

Author

Jonathan Vos Post, Jul 06 2005

Keywords

Comments

It seems that one or more primes almost always occur before finding the first such semiprime for a given n. There seems to be a modest correlation with the n^10 sequence (A109205) with often the same values [n = 0,1,15,21,22,24,31,36,58,81,94]. Or differs by 10 [n = 10,12,60,65,67, 86, 92,100]. Or 20 [n = 41, 46] or 30 [n = 38, 54,75]. Sometimes A109206(n) = A109205(n) = A109204(n) [n = 58,81]. Is it obvious that there must be a k for each n and not an infinite sequence of nonsemiprimes of the form n^11 + k^2?

Examples

			a(0) = 2 because 0^11 + 1^2 = 1 is not semiprime, but 0^11 + 2^2 = 4 = 2^2 is.
a(1) = 3 because 1^11 + 1^2 and 1^11 + 2^2 are not semiprime, but 1^11 + 3^2 = 10 = 2 * 5 is semiprime.
a(2) = 1 because 2^11 + 1^2 = 2049 = 3 * 683 is semiprime.
a(35) = 48 because 35^11 + 48^2 = 96549157373049179 = 401 * 240770966017579 and for no smaller k>0 is 35^11 + k^2 a semiprime.
a(100) = 37 because 100^11 + 37^2 = 10000000000000000001369 = 60089 *
166419810614255521 and for no smaller k>0 is 100^11 + k^2 a semiprime.
		

Crossrefs

Programs

  • Mathematica
    mk[n_]:=Module[{n11=n^11,k=1},While[PrimeOmega[n11+k^2]!=2,k++];k]; Array[ mk,100,0] (* Harvey P. Dale, Aug 06 2012 *)
Showing 1-1 of 1 results.