A109208 Palindromic primes p such that digit sum of p is a substring.
2, 3, 5, 7, 919, 31513, 1008001, 1123211, 1160611, 1268621, 1286821, 1311131, 1317131, 1412141, 1628261, 1802081, 1826281, 3187813, 3228223, 3245423, 3286823, 3291923, 3362633, 3528253, 3591953, 3765673, 3773773, 3781873
Offset: 1
Examples
31513 is a term because its digit sum 13 is a substring of 31513.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..54 (all terms up to the 5 millionth prime)
Crossrefs
Cf. A052019.
Programs
-
Mathematica
bb={};Do[id=IntegerDigits[p=Prime[n]];If[StringCount[ToString[p], ToString[Plus@@id]]>0&&Reverse[id]==id, AppendTo[bb, p]], {n, 1000000}];A109208=bb Select[Prime[Range[300000]],PalindromeQ[#]&&SequenceCount[IntegerDigits[#],IntegerDigits[ Total[ IntegerDigits[ #]]]]>0&] (* Harvey P. Dale, Dec 04 2021 *)
Comments