A109299 Primal codes of canonical finite permutations on positive integers.
1, 2, 12, 18, 360, 540, 600, 1350, 1500, 2250, 75600, 105840, 113400, 126000, 158760, 246960, 283500, 294000, 315000, 411600, 472500, 555660, 735000, 864360, 992250, 1296540, 1389150, 1440600, 1653750, 2572500, 3241350, 3601500, 3858750
Offset: 1
Keywords
Examples
Writing (prime(i))^j as i:j, we have this table: Primal Codes of Canonical Finite Permutations 1 = { } 2 = 1:1 12 = 1:2 2:1 18 = 1:1 2:2 360 = 1:3 2:2 3:1 540 = 1:2 2:3 3:1 600 = 1:3 2:1 3:2 1350 = 1:1 2:3 3:2 1500 = 1:2 2:1 3:3 2250 = 1:1 2:2 3:3 75600 = 1:4 2:3 3:2 4:1 105840 = 1:4 2:3 3:1 4:2 113400 = 1:3 2:4 3:2 4:1 126000 = 1:4 2:2 3:3 4:1 158760 = 1:3 2:4 3:1 4:2 246960 = 1:4 2:2 3:1 4:3 283500 = 1:2 2:4 3:3 4:1 294000 = 1:4 2:1 3:3 4:2 315000 = 1:3 2:2 3:4 4:1 411600 = 1:4 2:1 3:2 4:3 472500 = 1:2 2:3 3:4 4:1 555660 = 1:2 2:4 3:1 4:3 735000 = 1:3 2:1 3:4 4:2 864360 = 1:3 2:2 3:1 4:4 992250 = 1:1 2:4 3:3 4:2 1296540 = 1:2 2:3 3:1 4:4 1389150 = 1:1 2:4 3:2 4:3 1440600 = 1:3 2:1 3:2 4:4 1653750 = 1:1 2:3 3:4 4:2 2572500 = 1:2 2:1 3:4 4:3 3241350 = 1:1 2:3 3:2 4:4 3601500 = 1:2 2:1 3:3 4:4 3858750 = 1:1 2:2 3:4 4:3 5402250 = 1:1 2:2 3:3 4:4
References
- Suggested by Franklin T. Adams-Watters
Links
- J. Awbrey, Riffs and Rotes
- Rémy Sigrist, PARI program for A109299
Crossrefs
Programs
-
PARI
\\ See Links section.
-
PARI
is(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); Set(e)==[1..#e] && (#p==0 || p[#p]==prime(#p)) } \\ Rémy Sigrist, Sep 18 2021
Extensions
Offset changed to 1 and data corrected by Rémy Sigrist, Sep 18 2021
Comments