A109361 a(n) = Product_{k=1..n} sigma(k)/d(k), where sigma(k) = Sum_{j|k} j and d(k) = Sum_{j|k} 1. Set a(n) = 0 if the corresponding product is not an integer (e.g., for n=2 and n=10).
1, 0, 3, 7, 21, 63, 252, 945, 4095, 0, 110565, 515970, 3611790, 21670740, 130024440, 806151528, 7255363752, 47159864388, 471598643880, 3301190507160, 26409524057280, 237685716515520, 2852228598186240, 21391714486396800
Offset: 1
Keywords
Examples
a(4) = 1 * 3 * 4 * 7 /(1 * 2 * 2 * 3) = 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..558
Programs
-
Maple
p:= 1: A[1]:= 1: for n from 2 to 50 do p:= p * numtheory:-sigma(n)/numtheory:-tau(n); if p::integer then A[n]:= p else A[n]:= 0 fi od: seq(A[n],n=1..50); # Robert Israel, Jan 22 2018
-
Mathematica
Table[If[IntegerQ[Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}]], Product[DivisorSigma[1, k]/Length[Divisors[k]], {k, 1, n}], 0], {n, 1, 30}] (* Stefan Steinerberger, Oct 24 2007 *)
-
PARI
a(n) = my(q = prod(k=1, n, sigma(k)/numdiv(k))); if (denominator(q)==1, q, 0); \\ Michel Marcus, Sep 14 2015
Formula
Product_{k=1..n} sigma(k)/d(k) = Product_{p=primes} Product_{k>=1} ((p^(k+1)-1)*k/((p^k -1)(k+1)))^floor(n/p^k).
Extensions
More terms from Stefan Steinerberger, Oct 24 2007
Comments