cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109386 G.f. is the logarithm of the g.f. of A107742: Sum_{n>=1} (a(n)/n)*x^n = log( Sum_{n>=0} A107742(n)*x^n ).

Original entry on oeis.org

1, 3, 7, 7, 11, 21, 15, 15, 34, 33, 23, 49, 27, 45, 77, 31, 35, 102, 39, 77, 105, 69, 47, 105, 86, 81, 142, 105, 59, 231, 63, 63, 161, 105, 165, 238, 75, 117, 189, 165, 83, 315, 87, 161, 374, 141, 95, 217, 162, 258, 245, 189, 107, 426, 253, 225, 273, 177, 119, 539, 123, 189, 510, 127, 297
Offset: 1

Views

Author

Paul D. Hanna, Jun 26 2005

Keywords

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), this sequence (k=1), A288418 (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*DivisorSum[#, Mod[#, 2]&]&]; Array[a, 65] (* Jean-François Alcover, Dec 23 2015 *)
    f[p_, e_] := ((p + e*(p-1) - 2)*p^(e+1) + 1)/(p-1)^2; f[2, e_] := 2^(e+1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    a(n)=sumdiv(n,d,d*sumdiv(d,m,m%2))
    
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    c=sum(j=1, N, j*x^j);
    t=log( 1/prod(j=0, N, eta(x^(2*j+1))) );
    gf=serconvol(t, c);
    Vec(gf) /* show terms */
    /* Joerg Arndt, May 03 2008 */

Formula

a(n) = Sum_{d|n} d * Sum_{m|d} (m mod 2).
G.f.: Sum_{n>=1} a(n)/n*x^n = Sum_{j>=1} Sum_{i>=1} log(1+x^(i*j)).
From Vladeta Jovovic, Jul 05 2005:(Start)
Multiplicative with a(2^e) = 2^(e+1)-1 and a(p^e) = (p^(e+2)*(e+1)-p^(e+1)*(e+2)+1)/(p-1)^2 for p>2.
G.f.: Sum_{n>0} n*A000005(n)*x^n/(1+x^n).
G.f.: Sum_{n>0} n*A001227(n)*x^n/(1-x^n).
a(n) = A060640(n) if n is odd, else a(n) = A060640(n) - 2*A060640(n/2).
a(n) = Sum_{d|n} d*A001227(d).
a(n) = Sum_{d|n} d*A000593(n/d).
A107742(n) = (1/n)*Sum_{k=1..n} a(k)*A107742(n-k). (End)